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Abstract

We document evidence of widespread collusion among construction firms in Japan

using a novel dataset covering most of the construction projects procured by the Japanese

national government. Our dataset contains information on about 42,000 auctions

whose award amount sums to about $40 billion. We identify collusion by focusing

on rebids that occur for auctions in which all (initial) bids fail to meet the secret re-

serve price. We identify more than 1,000 firms whose conduct is inconsistent with

competitive behavior. These bidders were awarded about 15,000 projects, or about

37% of the total number of projects in our sample.

Key words: Collusion, Procurement Auctions, Antitrust

JEL classification: D44, H57, K21, L12

1 Introduction

One of the central themes of competition policy is to deter, detect, and punish collusion.
While there is almost universal agreement among economists that collusion among firms
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is socially undesirable, firms often have private incentives to engage in collusive behavior
absent regulatory sanctions. Therefore, it is crucial to ensure that the antitrust agencies
have the authority and the resources to detect and punish collusion in order to promote
competition among firms. To the extent that collusive activities remain undetected or un-
punished, collusion may become the norm rather than the exception, with potentially large
detrimental effects on the economy.

In this paper, we document evidence of widespread collusion among procurement auc-
tions in Japan. A key feature of the auctions that we study is that there is rebidding after an
unsuccessful auction in which no bid meets the secret reserve price. Using this feature, we
construct several tests of competition and apply them to data. Our dataset covers most of
the construction projects procured by Japan’s national government between April 2003 and
December 2006, consisting of about 42,000 auctions and award amount totaling about $40
billion. We find evidence of collusion that persists across regions, across types of construc-
tion projects and across time. In particular, we find more than 1, 000 construction firms for
which we reject the null hypothesis of competitive behavior. These bidders were awarded a
total of 15,583 auctions, or 37.1% of the total number of auctions in our sample. The total
award amount of these auctions is about $18.6 billion, or 44.2% of the total award amount
in our sample.

Our tests for detecting collusion exploit bidding patterns that result from preallocating
auctions to designated bidders. If there is a bidding ring and the project is preallocated to
one of its members, the designated winner can be expected to submit the lowest bid in the
initial auction as well as in the reauctions, if they occur. The designated losers, on the other
hand, will avoid undercutting the bid of the designated winner in the initial auction as well
as in the reauctions. Preallocation of auctions thus leads to persistence in the identity of the
lowest bidder across the initial auction and the reauctions. The tests of competition that we
propose in this paper leverage this idea.

In order to construct formal tests with correct size (i.e., controls for false positives),
the tests need to distinguish between persistence in the rank order of bidders that results
from collusive preallocation and persistence that results from simple cost heterogeneity
among competitive bidders. The key step for constructing formal tests is to properly ac-
count for the range of possible bidding patterns that can arise under competitive bidding
with asymmetric bidders. We consider two models of competitive behavior. The first one
is expected profit maximization with rational expectations in a one-shot (i.e., not repeated)
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game.1 A necessary condition of expected profit maximization is that losers of the ini-
tial auction should not profitably gain from bidding more aggressively in the reauctions.
Although we do not observe bidder costs, we can bound the counterfactual profits from
bidding more aggressively using bounds on costs derived by the restriction that bids in
subsequent reauctions are above the bidder’s costs. Given that the time between the initial
auction and all subsequent auctions is very short in our setting, using subsequent bids to
bound costs seems reasonable. By combining revealed preference restrictions with upper
bounds on costs, we construct a test of competition, rejection of which implies that bidding
is inconsistent with profit maximization in the one-shot game. Specifically, rejection of the
test suggests complementary bidding by designated losers.

While violation of profit maximization in the one-shot game is suggestive of collusive
non-Markov equilibria, we also consider a second model that captures a different aspect of
competitive bidding. Our model is motivated by the fact that, while large and systematic
errors are uncommon, small errors in the actions of players that deviate from optimal play
are prevalent (See e.g, McKelvey and Palfrey, 1995 and Samuelson, 2005). These errors
are particularly salient in the bidding context since formulation of the final bid is often a
complex and lengthy process with room for many random factors to affect the final bid.
Absence of any such idiosyncratic errors suggests coordinated bidding.

In order to incorporate small errors to the bidding strategy, we consider a second bench-
mark of competitive behavior that extends the standard model of bidding. In particular, we
let small idiosyncratic shocks to affect bidders’ bids and posit that, in the absence of coor-
dinated bidding, there exists one element of these shocks that are independent of the rivals’
bids. Note that our assumption does not necessarily imply that bidders are making mistakes
that are very costly or that bidders’ strategies are far from equilibrium play. The shocks can
be small optimization errors around the optimum.

We now briefly summarize the empirical patterns that contradict our benchmarks of
competitive behavior. The first pattern is how the losers of the initial auction bid in the
reauction. Letting i(1) and i(2) denote the lowest and the second lowest bidders of the
initial auction, respectively, we find that i(2) loses to i(1) in the reauction more than 95%
of the time. More specifically, we find that there are hundreds of auctions in which i(2) is
outbid by i(1) in the reauction by a tiny margin, but almost none in which i(1) is outbid by
i(2) in the reauction. This pattern implies that i(2) can win substantially more by bidding

1Here, the one-shot game refers to the game that consists of the initial auction and the subsequent reauc-
tions for the same project. The one-shot game does not include lettings for other projects.
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only slightly more aggressively in the reauction, which in turn, suggests that i(2) is not
playing a best response to i(1) in the reauction. Motivated by this pattern, we formally
test whether or not losers of the initial auction can increase profits by bidding more aggres-
sively in the reauction. Using bids in subsequent reauctions to bound costs, we find, for
example, that bidders who are outbid by i(1) in the initial auction by less than 1% of the
reserve price would be able to increase profits by more than 1.7 million yen by uniformly
reducing their bid in the reauction by 2%. These bidding patterns are inconsistent with
profit maximization in the one-shot game and suggests complementary bidding.

A second related bidding pattern that we document is what appears to be a kink in the
distribution of ∆2

12, the bid difference between i(1) and i(2) in the reauction. When we plot
the distribution of ∆2

12, we find that the shape of the distribution has a distinctive kink at
zero. The kink in the distribution implies that the probability that i(2) outbids i(1) remains
bounded away from 0.5 even as |∆2

12| approaches zero, which is inconsistent with our
second benchmark of competitive behavior. Our second benchmark of competition posits
that there exists an idiosyncratic component to the bids of each bidder, an implication of
which is that the probability that i(2) outbids i(1) must converge to 0.5 as |∆2

12| approaches
zero.

The third pattern that we document is the difference between firms that marginally out-
bid i(1) in the reauction and those that are marginally outbid by i(1) in the reauction. In
particular, we find that the average winning bids of past auctions in which the former set
of bidders participate are significantly lower than that of auctions in which the latter set
of bidders participate. Under the assumption that there exists an idiosyncratic component
to the bids, bidders who marginally outbid i(1) in the reauction should, on average, look
exactly the same as those who are marginally outbid by i(1). Hence, this finding is also
inconsistent with our second benchmark. On the other hand, this pattern is very much con-
sistent with the idea that colluding bidders refrain from outbidding i(1) while competitive
bidders are under no such constraints.

Overall, the results of our tests suggest that collusion is widespread in our sample. For
example, among the 1,000 largest firms in our dataset, we reject the null of competition
for 613 firms. In total, we reject the null of competition for 1,066 firms. The number of
auctions won by these firms totals 15,583, or 37.1% of the total number of auctions in our
sample.

The pervasiveness of collusion among construction firms that we document may have
significance for the broader economy. While our dataset accounts only for public construc-
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tion projects procured at the national level, firms that we identify as uncompetitive are also
active in prefectural and municipal procurement auctions. Evidence of collusion among
national-level auctions suggests that collusion may be wide-spread among all public con-
struction projects. The total value of public construction projects in Japan (which includes
projects procured by both local and national governments) is about $200 billion per year
and accounts for about 20% of total government expenditure. It amounts to about 4% of
Japan’s GDP.

More generally, the scale of collusion that we document in the paper highlights the
importance of rigorous enforcement of competition policy. Our findings lend support to the
view that, absent competition policy, collusion can be widespread and affect a significant
portion of an economy – as opposed to the view that collusion occurs sporadically and
only under a limited set of circumstances.2 Our results seem to indicate that entrusting
the antitrust agencies with the authority and resources to detect and punish collusion have
important aggregate-level implications.3

The approach that we use to detect collusion may be useful in other contexts as well.
While the detection methods that we propose in this paper are tailored to the institutional
setting of Japan, rebidding is a common feature of procurement auctions.4 Examples in
which the auctioneer holds multiple auctions for the same object include timber auctions
by the U.S. Forest Services, procurement auctions by the U.S. State DoT, and U.S. offshore
gas and oil lease auctions.5 Although the exact institutional features of the auctions differ
from setting to setting (e.g., the time between the initial auction and the reauction, whether
the bids of the initial auction are made public, etc.), the approach in our paper may provide
a useful starting point when screening for collusion in similar settings.

2Porter (2005), for example, expresses a view that is close to the former: “In any market, firms have an
incentive to coordinate their decisions and increase their collective profits by restricting output and raising
market prices.” For the latter view, see, e.g., Schmalensee (1987) and his description of Demsetz (1973) and
Demsetz (1974). In his description of the Differential Efficiency Hypothesis, Schmalensee (1987) writes,
“Effective collusion is rare or nonexistent.” See also Shleifer (2005), p. 440.

3There is a debate on whether or not competition policy is effective at increasing total factor productivity
(see, e.g., Buccirossi et al., 2013).

4Although auctions with rebidding is not an optimal mechanism for the auctioneer when bidders are
competitive, one potential advantage is that it makes for screening for collusion easier.

5See McAfee and Vincent (1997) for a description of reauctions in U.S. Forest Service timber sales, Ji and
Li (2008) for DoT auctions in Indiana, and Porter (1995) for offshore gas and lease auctions. Ji and Li (2008)
examine DoT auctions in which the auctioneer sets a secret reserve price, and there are multiple auctions for
the same project when none of the bids meets the secret reserve price. In their sample, they find that about
12.5% of lettings have two rounds of bidding. In his analysis of wildcat tracts, Porter (1995) reports: “A total
of 233 high bids, or 10 percent were rejected on these tracts. On the tracts with rejected bids, 47 percent were
subsequently reoffered.”
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Lastly, the findings in this paper shed light on the internal organization of bidding rings
that can potentially explain the puzzling bidding patterns documented in our companion
paper, Chassang et al. (2021). Chassang et al. (2021) document a missing mass of almost
tied bids in the initial auction using the same dataset as ours. In the current paper, we find
persistence in the identity of the lowest bidder across the initial auction and subsequent
reauctions which suggests that bidding rings preallocate auctions to designated winners
and that designated losers place complementary bids. Given that complementary bids are
typically communicated from the designated winners to the designated losers, the missing
mass of almost tied bids is likely to be related to the way in which complementary bids
are communicated between the bidders. If, for fear of leaving a paper trail, communication
between the cartels are carried out verbally, it seems reasonable to expect that the instruc-
tions regarding the complementary bids are coarse, i.e. unlikely to be specified up to the
penny. If the designated bidder specifies a round number above which designated losers
should bid while the designated winner places a bid just below it, it results in a very small,
but distinct missing mass of almost tied bids as documented in Chassang et al. (2021).

1.1 Related Literature

This paper contributes to the empirical literature on detecting collusion in auctions.6 Ex-
isting empirical studies of collusion tend to take advantage of known episodes of cartel
activity: e.g., paving in highway construction in Nassau and Suffolk counties (Porter and
Zona, 1993); school milk delivery in Ohio (Porter and Zona, 1999); school milk deliv-
ery in Florida and Texas (Pesendorfer, 2000); collectible stamps in North America (Asker,
2010a); and supply of asphalt in Quebec (Clark et al., 2018). While none of our analysis
requires information on known bidding rings, it is still useful to study the bidding behavior
of known cartels for validation purposes. Online Appendix IV contains an analysis of the
four bidding cartels that were prosecuted by the Japan Fair Trade Commission (JFTC).

Another strand of literature tests for collusion in the absence of any prior knowledge of
bidder conduct. Examples include seal coat contracts in three states in the U.S. Midwest
(Bajari and Ye, 2003); timber auctions in U.S. and Canada (Baldwin et al., 1997; Athey
et al., 2011; Schurter, 2017); offshore gas and oil lease auctions (Hendricks and Porter,
1988; Haile et al., 2012); roadwork contracts in Italy (Conley and Decarolis, 2016); LI-
BOR (Abrantes-Metz et al., 2012; Snider and Youle, 2012); public-works consulting in

6For a brief survey, see Asker et al. (2010b). For a more comprehensive study, see, e.g., Porter (2005),
Harrington (2008) and Marshall and Marx (2012).
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Okinawa, Japan (Ishii, 2009); municipal public works in Ibaraki (Chassang and Ortner,
2019); and municipal and national public works in Japan (Chassang et al., 2021). Ishii
(2009) studies 175 auctions of design consultant contracts in Naha, Okinawa and analyzes
how exchange of favors can explain the winner of the auctions. Chassang and Ortner (2019)
study theoretically how the introduction of minimum prices affects cartel behavior and doc-
ument evidence consistent with their theoretical predictions using data from municipalities
in Ibaraki.7 Chassang et al. (2021) follow up on our work by studying bidding behavior
using both National and municipal auctions from Japan and find additional evidence of
collusion. In particular, Chassang et al. (2021) document a missing mass of almost tied
bids.

The paper is also related to the literature on identification and estimation of incomplete
models (See, e.g., Tamer (2010) for a survey), and in particular, to the work of Haile and
Tamer (2003). In Haile and Tamer (2003), they partially identify the distribution of bidders’
values in English auctions using the restriction that bidders do not bid above their values.
Similarly, we use the idea that the costs of bidders can be bounded above by their bids in
reauctions for conducting a test of collusion. The bounds on costs allow us to put bounds
on the profits from playing alternative bidding strategies.

Finally, this paper is related to the literature on sequential auctions. McAfee and Vin-
cent (1997) study the problem of a seller who can post a reserve price but cannot commit
never to attempt to resell an object if it fails to sell. Skreta (2015) solves for the seller’s
optimal mechanism with no commitment and shows that multiple rounds of either first- or
second-price auctions with optimally chosen reserve prices maximize the seller’s revenue
when the bidders are ex-ante identical. The auctions in our dataset have the feature that
the seller cannot commit never to resell but can commit to the same secret reserve price.
Ji and Li (2008) structurally estimate a model of multi-round procurement auctions with a
secret reserve price using data on procurement auctions let by the Indiana DoT. The Indiana
DoT also maintains the same secret reserve price throughout the multiple rounds as in our
setting. Ji and Li (2008) recover the private cost distributions of the bidders assuming that
the observed bids are competitive.

7For a more general overview of bidding rings among procurement firms in Japan, see McMillan (1991).
See, also, Ohashi (2009), who discusses how the change in auction design in Mie prefecture affected collu-
sion.
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2 Institutional Background and Bidding Behavior

Auction Mechanism The auction format used in our data is a first-price sealed-bid
(FPSB) auction with rebidding. The auction mechanism is exactly the same as the standard
FPSB auction as long as the lowest bid is below the secret reserve price, in which case,
the lowest bidder becomes the winner with a price equal to the lowest bid, and the auction
ends. If none of the bids is below the reserve price, however, the buyer publicly announces
the lowest bid to all the bidders and solicits a second round of bids. The buyer reveals only
the lowest bid and none of the other bids (the identity of the lowest bidder and the secret
reserve price are not revealed). The second-round bidding typically takes place 30 minutes
after the initial round, with the same set of bidders and the same secret reserve price. This
means that when bidding in the second round, the bidders know that the secret reserve price
is lower than the lowest first-round bid.

The second round proceeds in the same manner as the initial round; if the lowest bid is
below the reserve price, the auction ends, and the lowest bidder wins. Otherwise, the buyer
reveals the lowest second-round bid to the bidders, and the auction goes to the third round.
The third round is the final round. If no bid meets the reserve price in the third round,
bilateral negotiation takes place between the buyer and the lowest third-round bidder. The
same secret reserve price is used in all three rounds.

Bidding takes place online in all three rounds, and the identity of the bidders is not
public at the time of bidding. The reserve price, the identity of the bidders, and all the bids
in each round are made public after the auction ends.8

Reserve Price The auctioneer computes the reserve price of each auction by breaking
down each project into specific procedures, each of which is then converted into a list of
required input quantities. For each input, the itemized price is computed by multiplying the
total input quantity by its unit price. The reserve price is obtained by summing the itemized
prices. Given that both the formula for converting procedures to input quantities and the
unit prices are published by the auctioneer, guessing the reserve price fairly accurately is
often not very difficult.9 However, there is rounding of itemized prices in the process of

8The fact that all bids from all rounds are made public may facilitate collusion by making it easier for
cartels to detect deviations.

9There is not much room for the auctioneer to exercise discretion in setting the reserve price. In fact, there
are many commercial softwares that estimate the reserve price fairly accurately given information on input
quantities.
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computing the reserve price, which makes the reserve price random from the perspective
of bidders.

Participation As is the case in many countries, participation in procurement auctions
in Japan is not fully open. A contractor that wishes to participate must first go through
screening to be pre-qualified. Pre-qualification occurs for each (region, project type, project
size category) triplet. An example of a triplet is (Hokkaido, Civil Engineering, Projects
worth less than 60 million yen). There are a total of 9 regions (e.g., Hokkaido, Tohoku,
etc.) and about 20 project types (Civil Engineering, Paving, Landscaping, etc.) in total.
Each project type in each region is further divided into 1 to 4 project size categories.10

While a given firm can be pre-qualified in multiple regions and for multiple project types,
a given firm cannot qualify for more than one project size category for a given region and
project type. This restriction ensures that rivalry is limited to mostly similarly sized firms.
There are about 300 triplets in total. For each triplet, there are about 230 firms that bid at
least once on that triplet. This number falls to about 65 if we count only firms that bid at
least 10 auctions for a given triplet.

In about 80% of the auctions, the MLIT restricts participation further by inviting a
subset of pre-qualified firms (typically about 10 firms) to the auction.11 Firms that are not
invited are not eligible to participate even if the firm is pre-qualified for the project. In only
about 20% of the auctions, the MLIT makes a public call for a tender. All pre-qualified
bidders are eligible to participate in these auctions.

While the number and the identity of the participating bidders are not disclosed to any
of the bidders beforehand, bidders can often predict fairly accurately the set of participants
by observing who comes to the on-site briefing.

Collusive Behavior In principle, bidding rings can be organized in a variety of ways
depending on whether or not members engage in side payments, whether explicit commu-
nication between the members is feasible, etc. Whatever the exact arrangement, however,
a very common feature of bidding rings is that the ring picks a predetermined winner in

10For example, civil engineering is typically segmented into four project size categories. The largest one
corresponds to projects above 720 million yen, the second one corresponds to those between 300 and 720
million, the third corresponds to those between 60 and 300 million, and the last corresponds to those less than
60 million.

11The MLIT typically decides which firms to invite to the auction based on considerations such as prox-
imity to the construction site and past performance of firms on similar projects.
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advance and that the rest of the ring members help that predetermined winner win. The ex-
isting evidence indicates that bidding rings in the construction industry in Japan are often
organized in this manner.12 The detection method that we propose in the paper exploits this
feature.

A few other documented features of prosecuted bidding rings in the Japanese construc-
tion industry are worth mentioning: First, the designated winner alone typically incurs the
cost of estimating the project cost.13 Estimating the project cost can be quite expensive,
and the non-designated bidders typically avoid incurring this cost.14 Note that this makes
it risky for a non-designated bidder to accidentally win the auction. Second, the designated
winner of a bidding ring would often communicate with other members in advance how
they should bid in each of the three rounds (as opposed to communicating how they should
bid in just the first round).15 Lastly, most prosecuted bidding rings consist of many firms,
often including more than 20+ firms.16 Some of the detected cartels were close to being
all-inclusive while others were partial.17

3 Data

We use a novel dataset of auctions for public construction projects obtained from the Min-
istry of Land, Infrastructure and Transportation (MLIT), the largest single procurement
buyer in Japan. The dataset spans April 2003 through December 2006 and covers most of
the construction work auctioned by the Japanese national government during this period.
After dropping scoring auctions, unit-price auctions, and those with missing or mistakenly

12See, for example, a report issued by the Japan Federation Bar Association (JFBA), which studies criminal
bid-rigging cases (JFBA, 2001).

13See, e.g., the criminal bid-rigging case regarding the construction of a sewage system in Hisai city (Tsu
District Court, No. 165 (Wa), 1997); the bid-rigging case regarding the construction of a waste incineration
plant in Nagoya city (Nagoya District Court, No. 1903 (Wa), 1995); etc. Based on facts that became clear in
these cases, the JFBA concludes that the project estimation costs are borne only by the designated winner in
many bidding rings. (JFBA 2001, p20)

14Estimating the project cost involves understanding the specifications of the project, assessing the quantity
and quality of materials required, negotiating prices for construction material and arranging for available
subcontractors. These costs are often quite substantial.

15See JFBA (2001), p19 and JFTC (2010b), pp.10-11.
16It is not uncommon for bidding rings to consist of many members. See Asker (2010a).
17Our tests of collusion do not require us to specify whether the cartels are all-inclusive or partial. Our null

is that all of the bidders are competitive. Rejection of the null can imply either partial or all-inclusive cartels,
although the tests are likely to have more power against all-inclusive cartels. The distinction between all-
inclusive cartels and partial cartels is important in the tests proposed in Porter and Zona (1993) and Baldwin
et al. (1997).
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Concluding (R)eserve (W)inbid (W)/(R) Lowest bid / Reserve #
N

Round
Yen M. Yen M. Round 1 Round 2 Round 3 Bidders

(1) (2) (3) (4) (5) (6) (7) (8)

1 103.401 97.232 0.927 0.927 - - 9.85 33,575
(245.72) (235.62) (0.085) (0.085) (2.60) 80.0%

2 86.214 83.594 0.965 1.056 0.965 - 9.89 7,138
(199.24) (194.51) (0.033) (0.075) (0.033) (2.42) 17.0%

3 62.601 60.646 0.963 1.143 1.071 0.963 9.41 1,249
(160.66) (158.34) (0.034) (0.113) (0.089) (0.034) (2.26) 3.0%

All 99.263 93.823 0.935 0.956 0.981 0.963 9.85 41,962
(236.46) (227.29) (0.079) (0.103) (0.060) (0.034) (2.56) 100.0%

Note: The first row corresponds to the summary statistics of auctions that ended in the first
round; the second row corresponds to auctions that ended in the second round; and the third row
corresponds to auctions that went to the third round, including 39 auctions that were determined
by bilateral negotiation. The last row reports the summary statistics of all auctions. The numbers
in parentheses are the standard deviations. First and second columns are in millions of yen.

Table 1: Summary Statistics

recorded entries, we are left with 41,962 auctions with a total award amount of more than
$39 billion.18

The data include information on all bids, bidder identity, the secret reserve price, auc-
tion date, location of the construction site, and the type of project.19 The data also contain
information on whether the auction proceeded to the second round or the third round, as
well as all the bids in each round. Table 1 provides summary statistics of the data. In the ta-
ble, we report the reserve price of the auction (Column (1)), the winning bid (Column (2)),
the ratio of the winning bid to the reserve price (Column (3)), the lowest bid in each round
as a percentage of the reserve price (Columns (4)-(6)), and the number of bidders (Col-
umn (7)). The sample statistics are reported separately by whether the auction concludes
in Round 1, Round 2, or proceeds to Round 3.20

The first and second columns of the table show that the average reserve price of the
auctions is about 99 million yen, and the average winning bid is about 94 million yen. The

18Samples with missing or mistakenly recorded entries each account for 3.0% of the entire dataset. Scoring
auctions account for 8.0%.

19Construction projects are divided into about 20 types of construction work, such as civil engineering,
architecture, bridges, paving, dredging, painting, etc.

20The sample that proceeds to Round 3 includes 39 auctions that were decided by bilateral negotiation.
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project size of auctions with two or more rounds tend to be smaller than that for auctions
that conclude in Round 1.21 In Column (3), we find that the winning bid ranges between
93% and 97% of the reserve price. In the next three columns, we report the lowest bid in
each round as a fraction of the reserve price. Note that for auctions that conclude in the
first round, the number in Column (4) is equal to the number in Column (3). For auctions
that conclude in the second or third round, the numbers reported in Column (4) are higher
than unity by construction. Column (8) reports the sample size. We find that 20.0% of the
auctions go to the second round, and 3.0% advance to the third round. Some bidders who
bid in Round 1 may decide not to bid in Round 2 or Round 3.22

Table 2 reports how the rank of the bidders changes from the first round to the second
round for all auctions that proceed to the second round with five or more participants (N =

8, 016). The (i, j) element of the Table corresponds to the probability that a bidder submits
the j-th lowest bid in the second round, conditional on submitting the i-th lowest bid in
the first round; i.e., Pr(j-th lowest|i-th lowest). Thus, the diagonal elements correspond to
the probability that a given bidder remains in the same rank in both rounds. Note that the
horizontal sum of the probabilities is one.

We find that in 96.64% of the auctions, the lowest bidder in the first round remains the
lowest bidder in the second round. The probability that a trailing bidder from the initial
auction outbids the lowest first-round bidder is very low. For example, the conditional
probability that a second-lowest bidder in Round 1 becomes the lowest bidder in Round
2 is only 1.62%. Note, also, that the diagonal elements other than the (1, 1) element are
much smaller: the probability that the second-lowest bidder in the first round remains the
second-lowest bidder is just 26.68%. There is very strong persistence in the identity of the
lowest bidder, but not necessarily for other positions.

Table 3 reports the summary statistics of the bidders in our data set. We group the firms
into five by the total number of auctions the firm participates in our sample and report the
summary statistics by group. The top row corresponds to the summary statistics for the 34
largest firms that participate in more than 500 auctions. The second row corresponds to the
set of 658 firms that participate in 100 to 500 auctions, and so on.

21Auctions for small projects have a higher bid-to-reserve ratio and tend to have multiple rounds of bidding.
These results suggest that bidding is more competitive for larger projects. This result is consistent with the
theory of Rotemberg and Saloner (1986). When the project size is larger, the temptation to deviate for non-
designated bidders becomes larger. In order to sustain collusion, the lowest bid on very large projects need to
be sufficiently lowered. More results on this point are available upon request.

22Online Appendix I contains a detailed analysis of attrition.
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Round 2
1 2 3 4 5+

1 96.64% 1.63% 0.62% 0.27% 0.82%

2 1.62% 26.68% 18.61% 13.32% 39.76%

Round 1 3 0.55% 18.84% 18.54% 13.91% 48.16%

4 0.38% 14.23% 15.93 % 15.43 % 54.03%

5+ 0.13% 6.75% 9.23% 10.39% 73.50%

Note: The (i,j) element of the matrix denotes the probability that a bidder
submits the j-th lowest bid in the second round conditional on submitting the
i-th lowest bid in the first round. When there are ties, multiple bidders are
assigned to the same rank. The number of auctions is 8,016.

Table 2: Rank of the Second-Round Bid by Rank of the First-Round Bid

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Group
Partici-
pation

Rival
Bidders

Unique
Rivals S1 S2 S4 S10 S15 Obs.

500+
807.8 8.5 434.4 62.7 57.5 47.3 28.9 17.9

34(299.4) (1.3) (266.1) (18.3) (17.2) (15.0) (8.7) (7.2)

100 - 500
176.8 9.2 294.1 40.8 36.4 30.7 20.3 14.6

658(80.7) (0.7) (175.6) (19.6) (18.9) (16.5) (9.3) (5.6)

50 - 100
69.0 9.3 140.6 49.9 44.3 37.4 24.8 18.2

1,130(13.6) (0.9) (66.4) (18.6) (17.2) (15.2) (9.1) (5.7)

15 - 50
28.5 9.2 77.7 57.3 50.8 42.9 28.3 20.4

3,426(9.8) (1.1) (35.6) (18.8) (18.0) (16.1) (9.5) (7.5)

1 - 15
4.3 9.0 23.6 85.4 79.8 71.7 44.7 36.5

17,566(3.7) (2.0) (15.7) (19.8) (22.7) (25.4) (22.3) (24.4)

Total
17.3 9.0 45.9 77.9 72.3 64.4 39.6 31.2

22,814(47.9) (1.9) (67.6) (23.9) (25.7) (27.2) (21.2) (22.2)

Table 3: Summary Statistics: Bidders.

Column (1) reports the average number of auctions in which a firm in a given group
participates, Column (2) reports the average number of rival bidders in an auction, and
Column (3) reports the cumulative number of unique opponents against whom a firm bids
in the sample. For example, we find that the largest group of bidders participates in about
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800 auctions and faces about 430 unique opponents, on average. Given that the average
number of rival bidders in an auction is around 8.5, a firm could face a total of about 6,800
(=800 × 8.5) unique bidders if bidders never faced the same opponent. However, we find
that the number of total unique bidders is a lot less, around 430. In Columns (4) - (8), we
report additional measures that capture how often firms bid against each other. In particular,
for each firm, we identify the rival who participates in the same auction with the firm most
frequently, second most frequently, and so on. Column (4) reports the percentage share
of auctions in which the most frequent opponent participates and Column (5) reports the
percentage share in which the second most frequent opponent participates. Columns (6),
(7), (8) correspond to the percentage shares for the fourth, tenth, and the fifteenth most
frequent opponents. The fact that the numbers in Column (4) are higher than 40% for all
rows means that, for the average firm, there exists a particular rival firm that is bidding on
the same project more than 40% of the time.

4 Bidding Patterns in Reauctions

In this section, we document several bidding patterns that motivate our formal tests of com-
petition. First, we document bidding patterns in reauctions that seem to suggest that losers
of the initial auction can increase profits by bidding slightly more aggressively in reauc-
tions. To the extent that this is actually the case, our finding rejects the null that bidders are
maximizing expected profits. We formally test this hypothesis in Section 5.1. Second, we
document what appears to be a sharp kink in the distribution of the bid difference between
i(1) and i(2) in the second round and in the third round, where i(k) denotes the identity of
the bidder who submits the k-th lowest bid in Round 1. Lastly, we document differences
between the set of bidders who marginally outbid i(1) in the reauction and the set of bid-
ders who are marginally outbid by i(1). We find that bidders in the former set participate
in auctions with lower winning bids, on average, than the latter. The second and the third
bidding patterns that we document seem to reject the null that there exist factors that affect
bids which are idiosyncratic to that bidder. We construct formal tests of competition based
on the second and third patterns in Section 5.2

In what follows, we denote the (normalized) bid of bidder i(k) in round t by bti(k).
Because there is considerable variation in project size, we work with the normalized bids
by dividing the actual bids by the reserve price of the auction. Hence, b2i(1), for example,
denotes the second-round bid of the first-round lowest bidder as a percentage of the reserve
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price.

Distribution of Second Round Bid Differences We begin with a plot of the his-
togram of b2i(2)− b2i(1) (= ∆2

12), the second-round bid difference between i(1) and i(2). The
top left panel of Figure 1 plots ∆2

12 for all auctions that reach the second round. The figure
shows that ∆2

12 falls to the right of zero almost all of the time, which confirms what we
report in Table 2: a flip in the rank order between the lowest and the second-lowest bidders
almost never happens across rounds. We also find, however, that the margin by which i(2)

loses to i(1) in the reauction is often small. This is reflected in the fact that the histogram
of ∆2

12 has a substantial mass just to the right of zero. These findings suggest that i(2)

can increase the winning probability in the reauction substantially by bidding only slightly
more aggressively.

Of course, the fact that i(2)’s winning probability in the reauction responds sharply to a
small decrease in b2i(2) does not immediately imply that i(2)’s current bid is suboptimal. If
i(2)’s costs are relatively high, i(2)’s current bidding strategy may be optimal. The second
through fourth panels of the left column of Figure 1, however, are suggestive that i(2) has
room to improve profits.

The second and third panels of the left column of Figure 1 plot ∆2
12 for auctions in which

i(1) and i(2) bid relatively close to each other in the first round. In particular, the second
panel conditions on b1i(2) − b1i(1) < 5% and the third panel conditions on b1i(2) − b1i(1) < 1%.
The fourth panel plots ∆2

12 conditional on the event that the three lowest bids in the first
round are all within 1%, i.e., b1i(3) − b1i(1) < 1%.23

Intuitively, bidders who lose to i(1) by a relatively small margin in the initial round are
likely to have similar costs as i(1), on average, under competition. However, we find that
the shape of the histogram of ∆2

12 remains similar from panel to panel. The figures suggest
that bidders who have relatively low costs can also increase their winning probability by
bidding slightly more aggressively. This, in turn, suggests that bidders who lose to i(1)

by a small margin in the initial auction are not bidding optimally. These findings motivate
our test of competition in Section 5.1. There, we formally test for the optimality of second
round bidding strategies of the losers in the initial auction. Our test is valid (i.e., has

23Note that conditioning on b1i(2) − b1i(1) < 5% and b1i(2) − b1i(1) < 1% still leaves us with relatively
large sample sizes. For example, conditioning on 5% only reduces the sample of bids from 7,854 to 6,822.
Conditioning on 1% leaves us with a sample size of 2,142. This is consistent with the findings in Chassang
et. al. (2021) in which we document a distinct missing mass of almost tied bids while also finding a relatively
large concentration of losing bids within a few percent of the lowest bid.
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correct size) regardless of whether or not a bidder loses to i(1) by a small or a large margin,
although the test will turn out to have the most power for close losers in practice. The test
takes into account the possible complications that arise from the fact that the lowest bid in
each round are revealed to the other bidders.

Another notable feature of the distribution of ∆2
12 is what appears to be a kink at zero

on the horizontal axis. We find that the number of observations in an interval to the left
of zero, [−t, 0] and the number of observations in an interval to the right of zero, [0, t],
are very different even for small values of t > 0. To the extent that there exists some
idiosyncrasy among the bidders, i(2) should outbid i(1) in the second round by a narrow
margin just as often as i(1) outbids i(2) by a narrow margin. That is, there should be a
similar number of observations in which ∆2

12 ∈ [−t, 0] and ∆2
12 ∈ [0, t] for small values

of t – a feature which we clearly do not see in any of the histograms of the left panels of
Figure 2. This finding motivates our test in Section 5.2 which is based on the null that there
exist idiosyncratic factors that affect bids if bidders are bidding competitively. A natural
interpretation of these bidding patterns is that they are generated under a collusive scheme
in which i(1) is the designated bidder, other bidders know precisely how i(1) is going to
bid in the second round, and place bids above i(1)’s bid.24

For comparison, the right panels of Figure 1 plot the histogram of b2i(3) − b2i(2) (= ∆2
23),

the second-round bid difference between i(2) and i(3). Similar to the left panels, the top
right panel is for all auctions that reach the second round, and the other panels correspond
to conditioning on b1i(3)− b1i(2) < 5%, b1i(3)− b1i(2) < 1% and b1i(3)− b1i(1) < 1%, respectively.
In contrast to the left panels, we find that the shape of the histogram of ∆2

23 is symmetric
around zero, implying that the rank order between i(2) and i(3) flips in the second round
with close to 50% probability.

In Online Appendix II, we plot the histograms of ∆2
12 and ∆2

23 conditional on various
auction characteristics, such as region, project type, and year. We find that the distributions
of ∆2

12 and ∆2
23 often look very similar to those shown in Figure 1: The distribution of ∆2

12

is skewed to the right and displays what appears to be a discontinuity at ∆2
12 = 0, while

the distribution of ∆2
23 is symmetric around ∆2

23 = 0.25 In Online Appendix II, we also

24Our findings suggest that bidding rings determine beforehand how each ring member should bid in the
second round – not just how to bid in the first round. This is natural, given that a substantial fraction of
auctions go to the second round and that there are only 30 minutes between rounds.

25In Online Appendix II, we also plot the differences in the homogenized bids. Homogenized bids are the
residuals from a regression in which the bids are regressed on auction characteristics (See Haile et al., 2003).
A plot of the differences of the homogenized bids also show very similar patterns.
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The first row is the histogram for the set of auctions that reach Round 2, and i(1) and i(2) (or
i(2) and i(3)) submit valid bids in Round 2. The second to fourth rows plot the same histogram,
but only for auctions in which the differences in the first-round bids are relatively small. N is
the sample size, and the number in the parenthesis corresponds to the fraction of auctions that lie
to the left of zero. The sample sizes are different between the top left and the top right panels
because in some auctions, i(1) or i(3) does not bid in Round 2. Similarly for the bottom left and
right panels.

Figure 1: Difference in the Second-Round Bids of i(1) and i(2) (Left Panels) and the
Difference in the Second-Round Bids of i(2) and i(3) (Right Panels).

plot ∆2
12 as well as ∆2

23 without normalizing the bids by the reserve price. The graphs also

17



appear similar to Figure 1.26

Distribution of Third Round Bid Differences For the subset of auctions that reach
the third round, we can further examine whether a similar bidding pattern that we find for
the second round continues to hold in the third round. In the top panels of Figure 2, we plot
the difference in the third-round bids of i(1) and i(2), i.e., ∆3

12 ≡ b3i(2) − b3i(1) (left panel),
and the difference in the third-round bids of i(2) and i(3), i.e., ∆3

23 ≡ b3i(3) − b3i(2) (right
panel) for all auctions that advance to the third round. In rows two to four of Figure 2,
we plot the histogram conditioning on the set of auctions in which the first-round bids are
relatively close. The conditioning sets are the same as those in Figure 1.

Overall, Figure 2 shows that bidding patterns in the third round are similar to those
in the second round. We find that i(1) almost always outbids i(2), but often by a narrow
margin. We also find that i(3) outbids i(2) about half of the time.

Outbidding i(1) in the Second Round To the extent that collusive bidding implies
that trailing bidders from the first round do not outbid i(1) in the second round, an auction
in which i(1) is outbid in the second round is a sign of competition among bidders. Hence,
if bidder i (6= i(1)) outbids i(1) in the second round, we expect i, on average, to be a more
competitive bidder than those who do not outbid i(1). We explore this idea by comparing
the bidding behavior of firm i who outbids i(1) in the second round (i.e., b2i < b2i(1)) to
those who do not (i.e., b2i > b2i(1)). Specifically, for each auction n and each bidder i 6=
i(1), we consider the average winning bid of the five preceding and the five succeeding
auctions in which bidder i participates. Ordering the auctions in which bidder i participates
chronologically, and letting bwinm denote the winning bid in auction m, we consider the
following two statistics:

bbeforei,n =
1

5

m=n−1∑
m=n−5

bwinm , bafteri,n =
1

5

m=n+5∑
m=n+1

bwinm .

We compute bbeforei,n and bafteri,n for each auction n that reaches the second round and for
each bidder i (6= i(1)). Note that we do not include the winning bid of auction n when

26In Online Appendix III, we also document bidding patterns from three municipal auctions. The format of
the municipal auctions are almost exactly the same as the auctions in our sample with one difference, which
is that none of the bids are announced at the end of each round in the municipal auctions. We find similar
bidding patterns in reauctions for the municipal auctions as well.
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The first row corresponds to all auctions that reach the third round and i(1) and i(2) (in the case
of the left panel) or i(2) and i(3) (in the case of the right panel) submit valid bids in the third
round. The second to fourth rows plot the same histogram, but only for auctions in which the
differences in the first-round bids are relatively small.

Figure 2: Difference in the Third-Round Bids of i(1) and i(2) (Left Panels) and the Differ-
ence in the Third-Round Bids of i(2) and i(3) (Right Panels).

computing bbeforei,n and bafteri,n

Figure 3 is a binned scatter plot of bbeforei,n and bafteri,n against b2i,n − b2i(1),n.27 In the left

27A more direct test may be to use the actual bids of bidder i to construct the test statistics (as opposed to
the winning bids). With actual bids, we lose statistical significance at 5%.
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The left panel plots bbeforei,n against b2i,n − b2i(1),n, and the right panel plots bafteri,n against
b2i,n − b2i(1),n. The bin size is 0.005. In both panels, the region to the left of zero corresponds to
auctions in which bidder i (6= i(1)) outbids i(1), and the region to the right of zero corresponds to
auctions in which i(1) outbids bidder i.

Figure 3: Binned Scatter Plot of bbeforei,n and bafteri,n Against b2i,n − b2i(1),n.

panel of the figure, the vertical axis corresponds to bbeforei,n . The horizontal axis corresponds
to b2i,n − b2i(1),n, i.e., the difference in the second-round bids between i(1) and i in auction
n. The dots to the left of zero in the panel correspond to the bin averages of bbeforei,n for
bidders that trail in Round 1 and outbid i(1) in Round 2. The dots to the right of zero
correspond to bbeforei,n for those that trail in Round 1 and lose to i(1) in the second round.
Vertical bars correspond to the confidence intervals. The sample size to the left of zero
is much smaller (413) than the sample size to the right of zero (55,549). Hence, the bin
averages are less precisely estimated to the left of zero. Nonetheless, the left panel shows
that bbeforei,n is lower, on average, to the left of zero than to the right of zero. The regression
discontinuity estimate of the difference in bbeforei,n at zero is 2.4 percentage points, and it is
statistically significant at the 5% level.28

Similar to the finding that the distribution of ∆2
12 has a kink at ∆2

12 = 0, the finding that
the mean of bbeforei,n is discontinuous (with respect to b2i,n−b2i(1),n) at zero is inconsistent with
the null that there exist idiosyncratic factors that affect bids under competitive bidding. To

28We use an estimator proposed in Calonico et al. (2018) with an Epanechnikov kernel and a mean square
error optimal bandwidth.
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the extent that there are idiosyncratic factors, the set of bidders just to the left of zero in
Figure 3 should be similar to the set of bidders just to the right of zero, on average. In
section 5.2, we formally show that this result violates our benchmark of competition.

The right panel of Figure 3 is a binned scatter plot of bafteri,n against b2i,n − b2i(1),n. We
find that the regression discontinuity estimate of bafteri,n at b2i,n− b2i(1),n = 0 is 2.7 percentage
points, and statistically significant at the 95% level. Although this panel is also consistent
with the notion that persistence in the identity of the lowest bidder is symptomatic of col-
lusion, it is not as clean as the left panel. This is because the right panel plots the winning
bid of auctions that take place after the auction in question. A bidder who outbids i(1)

is likely to be the winner of the auction, which introduces asymmetry between a bidder
who marginally loses to i(1) and a bidder who marginally defeats i(1), from that point on-
ward. To the extent that backlog affects future bidding behavior, the difference at zero may
capture that effect.

5 Formal Tests of Competitive Bidding

In this section, we propose formal tests of competitive bidding and apply them to our data.
We consider two benchmarks of competitive behavior. The first is expected profit max-
imization with rational expectations and the second is existence of idiosyncratic factors
that affect bids. These benchmarks reflect the notion that, under competition, bidders bid
optimally to first-order approximation, but that small optimization errors and idiosyncratic
shocks are also prevalent. In order to test the former, we test for the optimality of the bid-
ding strategy in the reauction employed by bidders who lose in the initial auction. In order
to test for the latter, we test whether or not the marginal winners of the second round are
similar to marginal losers of the second round.

5.1 Optimality of Second-Round Bidding Strategy

Recall that there are many cases in which i(2) could have outbid i(1) in the second round
by lowering its second-round bid by a tiny margin. For example, focusing on the left panel
of the second row in Figure 1, we find that about 15.75% and 38.67% of the distribution of
∆2

12 lie within [0, 0.01] and [0, 0.02], respectively. On the other hand, the fraction of the
distribution that lies to the left of zero is only 1.73%. This suggests that i(2) can increase
the probability of outbidding i(1) substantially by decreasing its bid only slightly, raising
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the question of whether i(2)’s second-round bid is optimal.29

Based on this observation, we construct a formal test of competition taking the null
of competition as expected profit maximization in the one-shot (i.e., not repeated) game,
where the one-shot game includes the initial auction and the subsequent reauctions for the
same project but not lettings for other projects. In particular, we test whether or not the
second-round bidding strategy employed by bidders who lose in the first round is optimal.
Note that expected profit maximization is a necessary condition of Bayes Nash equilibria
of the one-shot game.30 Rejection of expected profit maximization is suggestive of collu-
sive repeated-game incentives that keep the bidders from bidding optimally in the one-shot
game.

The key idea behind the test is that the firm’s third-round bid can provide an upper
bound on its costs under private values. Using this idea, we can compute a lower bound on
the bidder’s profits from playing an alternative bidding strategy in the second round without
fully characterizing the equilibrium. This approach is similar in spirit to that of Haile and
Tamer (2003), who obtain an upper bound on the value of bidders in an incomplete model
of English auctions using the assumption that bidders do not bid above their value.

In what follows, we compare, for bidders that lose in the first round, the expected
profits from using the current second-round strategy and the expected profits from using
alternative second-round strategies. The alternative strategies that we consider are of the
form xb2i , where x is some number less than 1 (e.g., 0.99) and b2i is the bidder’s current
(unnormalized) second-round bidding strategy. Just for this section, we work with the raw
bids without normalizing by the reserve price. We show below that, for a range of values
of x, the expected profits actually increase.

First, let i be a bidder who bid higher than i(1) in the first round and b2i be its current
bidding strategy in the second round. Note that the strategy (which can be a mixed strategy)
depends on the information revealed to bidder i in the first round, denoted as J , which
includes its own costs, ci, its own bid, b1i , the lowest bid, minj b

1
j , and the fact that the secret

reserve, r, is less than the lowest bid (in addition to observable auction characteristics):

J = (ci, b
1
i ,min

j
b1j , {r < min

j
b1j}).

29Strictly speaking, i(2) does not know that it came in second at the time of rebidding (it learns only that
it came close to being first). The analysis below takes this into consideration.

30In Online Appendix VI, we characterize a mixed-strategy equilibrium with two rounds and two bidder
types.
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The expected profits of bidder i consist of two components: the expected profits from
winning in the second round; and the expected profits from being the lowest bidder in the
third round if the auction advances to the third round. We denote by W 2 the event that
bidder i wins in the second round and by W 3 the event that bidder i is the lowest third-
round bidder,

W 2 = {b2i < min{r,min
j 6=i

b2j}}

W 3 = {b3i <min
j 6=i

b3j and min
j

b2j > r},

where b3i is bidder i’s current third-round bidding strategy.31 We now express bidder i’s
expected profits under b2i :

πi|J = Pr(W 2|J )EJ [b2i − ci|W 2] + Pr
(
W 3|J

)
EJ [ profits |W 3].

The profits in eventW 3 is either b3i−ci if b3i is lower than r, or some number less than b3i−ci
(which depends on how the bilateral negotiation between bidder i and the government plays
out) if b3i is higher than r. In either case, the expected profits in event W 3 are less than
EJ [b3i |W 3]. Thus, we can bound πi|J from above as follows:

πi|J 5 Pr(W 2|J )EJ [b2i − ci|W 2] + Pr
(
W 3|J

)
EJ [b3i |W 3].

Now consider the expected profits, π̃i|J , from an alternative second-round bidding strat-
egy that discounts current second-round bids by some factor x ∈ (0, 1). As before, π̃i|J
consists of two components, the expected profits from the second round and the expected
profits from the third round:

π̃i|J = Pr(W̃ 2|J )EJ [xb2i − ci|W̃ 2]+ EJ [third round profits],

where W̃ 2 is the event in which bidder i wins in the second round using strategy xb2i , i.e.,
{xb2i < min{r,minj 6=i b

2
j}}. Because we are interested only in obtaining a lower bound

for π̃i|J , it is not necessary to specify EJ [third-round profits] other than to note that it is

31b3i depends on the information available to bidder i after two rounds of bidding, i.e.,
(ci, b

1
i ,minj b

1
j , {r < minj b

1
j}, b2i ,minj b

2
j , {r < minj b

2
j}).
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nonnegative. Thus, we obtain a lower bound on π̃i|J as follows:

π̃i|J = Pr(W̃ 2|J )EJ [xb2i − ci|W̃ 2]. (1)

We now compare the change in expected profits, ∆πi|J , from bidding xb2i instead of
b2i . Using the bounds obtained above, ∆πi|J can be bounded below as follows:

∆πi|J ≡ π̃i|J − πi|J = Pr(W̃ 2 −W 2|J )EJ [xb2i − ci|W̃ 2 −W 2]

− Pr(W 2|J )EJ [(1− x)b2i |W 2]− Pr(W 3|J )EJ [b3i |W 3], (2)

where W̃ 2 −W 2 = W̃ 2 ∩ (W 2)C . Note that W̃ 2 −W 2 is the event in which bidder i wins
in the second round with xb2i but not with b2i . Because we consider x ∈ (0, 1), W̃ 2 is a
superset of W 2, i.e., W̃ 2 ⊃ W 2. The potential gain from using strategy xb2i instead of b2i
occurs in event W̃ 2 −W 2, and the amount of the gain is (xb2i − ci).32 The first term on the
right-hand side of expression (2) corresponds to the gain. The second term corresponds to
the potential loss from using xb2i . In event W 2, using xb2i is less profitable than b2i because
bidder i is already winning with a bid of b2i . Note that a necessary condition of expected
profit maximization is that firm i has no profitable deviation, i.e., ∆πi|J is nonpositive for
each J .

In order to derive conditions that we can take to the data, considerH, which is a coarser
partition of J :

H = (b1i ,min
j

b1j , {r < min
j

b1j})

The difference between J andH is that J includes ci butH does not. Taking expectations
of expression (2) with respect toH, we obtain the following expression:

∆πi|H ≡ EH
[
∆πi|J

]
= Pr(W̃ 2 −W 2|H)EH[xb2i − ci|W̃ 2 −W 2]

− Pr(W 2|H)EH[(1− x)b2i |W 2]− Pr(W 3|H)EH[b3i |W 3]. (3)

Given that expected profit maximization requires ∆πi|J to be nonpositive for each J , it
also requires ∆πi|H to be nonpositive for eachH.

Taking expectations with respect to H allows us to get closer to expressions that we

32If ci is higher than xb2i , this will not be a gain, but a loss.
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Figure 4: Event W̃ 2 −W 2 includes two possibilities, one in which r happens to be below
the lowest bid in the second round (Case 1) and the other in which r happens to be above
the lowest bid in the second round (Case 2).

can take to the data. All of the terms in expression (3), except for EH[ci|W̃ 2 −W 2], can
be evaluated directly from the data, in the sense that sample analogues can be constructed
(assuming thatH does not include characteristics that are unobservable to the econometri-
cian). For example, for any given value x, EH[xb2i |W̃ 2 −W 2] can be evaluated by taking
the sample average of xb2i for auctions in which (1) bidder i bids b1i in the first round, (2)
the lowest first-round bid is minj b

1
j , and (3) a bidder does not win in the second round,

but would have won if it had bid x (e.g., 0.99) of the original bid.33 The only term that we
cannot evaluate directly is EH[ci|W̃ 2 −W 2] because we do not know ci. However, under
the private values assumption, it turns out that we can bound this term using the bidder’s
third-round bid. We discuss this issue next.

Recall that W̃ 2 − W 2 corresponds to the event in which bidder i wins in the second
round with xb2i but not with b2i . Event W̃ 2 −W 2 includes two possibilities, one in which
r happens to be below the lowest bid in the second round ({r < minj b

2
j}) and the other in

which r happens to be above ({r = minj b
2
j}). Figure 4 depicts the two situations. Note

that for Case 1, the auction proceeds to the third round, and we observe b3i . Hence, we
can bound ci from above by the observed third-round bid, b3i .

34 For Case 2, however, the
auction ends in the second round, and we do not observe third-round bids.

We now consider how to put bounds on ci for Case 2. Note that whether or not the
auction proceeds to the third round is, to some extent, independent of the bidders’ costs. It
depends, in part, on the random realization of r. The lemma below makes this statement

33Note that conditioning on b1i and minj b
1
j is necessary because we need to condition onH.

34Even for Case 1, we do not observe the third-round bid when the bidder decides not to bid in the third
round. When this is the case, we use the bidder’s second round bid as an upper bound, which is a very
conservative bound.
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precise; it states that if we have two auctions with the same realizations of {b1i , minj b
1
j , b

2
i ,

minj b
2
j}, but one ending in the second round and the other proceeding to the third round,

bidder i’s costs must be the same, on average, in the two auctions. This lemma generalizes
the observation that, if bidder i plays a pure monotone strategy, two auctions with the same
realizations of b1i implies the same realization of ci.35 The lemma allows us to bound bidder
i’s costs for Case 2 by using the third-round bids conditional onH and {b2i ,minj b

2
j}.

Lemma Assume that bidders have private costs c = (c1, · · · , cN); that c has density; and

that c ⊥ r. Then,

EH[ci|{r = min
j

b2j}, b2i ,min
j

b2j ]

= EH[ci|b2i ,min
j

b2j ] (4)

= EH[ci|{r < min
j

b2j}, b2i ,min
j

b2j ].

Moreover,

EH[ci|(W̃ 2 −W 2) ∩ {r = min
j

b2j}]

5 EH[hH(b2i ,min
j

b2j)|(W̃ 2 −W 2) ∩ {r = min
j

b2j}], (5)

where hH(b2i ,minj b
2
j) = EH[b3i |{r < minj b

2
j}, b2i ,minj b

2
j ].

Proof. See the Appendix.
The first part of the lemma states that, conditional on {b2i ,minj b

2
j}, the expected cost

of bidder i for an auction that ends in the second round givenH (the first line of expression
(4)) is the same as the expected cost of bidder i for an auction that goes to the third round
given H (the third line of expression (4)) – under the assumption of private values and
c ⊥ r. We argue below that these two assumptions are relatively innocuous in our setting.
The second part of the lemma states that we can bound ci in Case 2 using the mean of the
observed third-round bids. Note that the left-hand side of inequality (5) is the expected
bidder cost conditional on Case 2. This is bounded by the conditional expectation of hH(·),
which is the expectation of b3i conditional on {b2i ,minj b

2
j , {r < minj b

2
j}}.

35If bidder i plays a pure monotone strategy, b1i is fully revealing about i’s costs. In particular, EH[ci|{r <
minj b

2
j}] = EH[ci|{r = minj b

2
j}] given that information set H includes b1i . Because we allow for mixed

strategies, we need to condition on {b2i ,minj b
2
j}.
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The reason that the Lemma is useful is that the right-hand side of expression (5) can be
computed using observed data. In particular, hH(·) can be estimated by the sample mean of
the observed third-round bids conditional on {b2i ,minj b

2
j} andH. In practice, our estimate

of hH(·) is a linear projection of b3i on b1i ,minj b
1
j , b

2
i ,minj b

2
j as well as auction character-

istics such as year, region, and project types, based on the subset of auctions that reach the
third round. We can then use the estimated function, hH(·), to predict what the value of b3i
would have been for Case 2 as hH(b2i ,minj b

2
j).36 The average of hH(b2i ,minj b

2
j) among

all Case 2 auctions conditional onH corresponds to the right-hand side of expression (5).
Before we present our results, we briefly discuss the two assumptions of the Lemma,

namely, that bidders have private values and that the costs and the reserve price are in-
dependent. We start with the private values assumption. By assuming that bidders have
private values, ci becomes constant throughout the three rounds, ensuring that b3i is a valid
upper bound for the costs of bidder i perceived at the time of the second round. Note that
the private values assumption is sufficient but not necessary for b3i to be an upper bound
for ci at Round 2. If, instead, bidders have common values, bidders may update their costs
in the third round based on the observed lowest second-round bid. Our results hold as long
as b3i can be used as an upper bound on the costs of bidder i perceived at the time of the
second round.37

Next, we discuss the independence of c and r.38 One might be inclined to argue that the
independence assumption is violated based on, for example, the observation that c and r are
both low for simple jobs (e.g., road paving) and that they are both high for complicated jobs
(e.g., bridges). This is not necessarily a valid criticism of the independence assumption.
In this example, all of the players should be aware that there are two completely different
sets of distributions from which c and r are drawn, one for road paving and the other for
bridges. It is not the case that there is one common set of distributions of c and r for both
paving and bridges. Conditional on what is common knowledge to the players, c and r
may very well be independent even in this example.39 As long as c and r are independent

36Intuitively, for each auction that ends in the second round, we can find another auction that reaches the
third round and has the same realization of (b1i ,minj b

1
j , b

2
i ,minj b

2
j ) as the former. The third-round bids of

the latter can be used as a bound for ci in the former.
37If bidders revise their costs up conditional on reaching the third round, our results would continue to

hold. Online Appendix VII analyzes the sensitivity of our results to downward revision of costs.
38We do not need bidder costs {ci} to be independent or identical.
39For example, suppose that bidder costs and the reserve price for paving are given by cpi = µp + εpi and

rp = µp + εp, and similarly for bridges, cbi = µb + εbi and rb = µb + εb. Suppose, also, that µp and µb are
constants commonly observed by the bidders, whereas εpi and εbi are privately known to the bidders. Then,
c and r are independent from the perspective of the bidders as long as εpi⊥εp and εbi⊥εb (although they are
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conditional on observable characteristics, the results of the Lemma remain true.
The reason why we think that conditional independence is not a bad assumption is

because of the way the reserve price is constructed. As we described in Section 2, there
is a formula for converting various procedures into input quantities. The reserve price is
essentially the sum of the inputs multiplied by their unit price. However, there is rounding
in the process of computing the reserve price, which make the reserve price random from
the perspective of bidders. To the extent that the randomness in the reserve price stems
from the way rounding is applied in each step, the reserve price is plausibly independent of
private cost realizations at the firm level.

We are now ready to evaluate ∆πi|H, the difference in the expected profits from using
xb2i instead of b2i in the second round. Using expressions (2) and (5) and the fact that
b3i > ci for Case 1, we obtain the following bound:

∆πi|H = ∆πi|H, (6)

where

∆πi|H = Pr(W̃ 2 −W 2|H)EH[xb2i |W̃ 2 −W 2]− Pr(W 2|H)EH[(1− x)b2i |W 2]

− Pr(W 3|H)EH[b3i |W 3]− Pr({Case 1}|H)EH[b3i |{Case 1}]

− Pr({Case 2}|H)EH[hH(b2i ,min
j

b2j)|{Case 2}];

{Case 1} = (W̃ 2 −W 2) ∩ {r < min
j

b2j}; and

{Case 2} = (W̃ 2 −W 2) ∩ {r = min
j

b2j}.

As explained earlier, we can construct sample analogues of all of the terms on the right-
hand side of expression (6) using all auctions that reach the second round. For auctions that
end in the second round, we use the predicted third round bid, hH(b2i ,minj b

2
j) as a bound

on costs, and for auctions that reach the third round, we use the realized third round bid,
b3i .

Although it is possible to use inequality (6) directly to construct our test, given that
evaluating the inequality for eachH requires a lot of data, we work with an inequality that
pools acrossH. Note that, for any coarser partition, I ⊂ H, we can construct an inequality
analogous to expression (6) in which H is replaced with I (except for the subscript in

correlated unconditionally if µp 6= µb).
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hH).40 Hence, the null hypothesis that we take to the data is as follows:

H0: 0 = ∆πi|I . (7)

We report our estimates of ∆πi|I for I = {b1i −minj b
1
j < δminj b

1
j} ∩ {r < minj b

1
j}

with four different values of δ (1%, 3%, 5%, 15%) and five different values of x (99%,
98.5%, 98%, 97.5%, 97%) in Table 4.41 Here, I also pools across auction characteristics.42

Note that {b1i − minj b
1
j < δminj b

1
j} corresponds to the event that a bidder loses to the

lowest bidder by less than δ in the first round. Thus, each cell in Table 4 represents the
lower bound of the change in expected profits from using xb2 instead of b2 for all bidders
who lose in the first round by less than δ.43

Note that all of the cells in Table 4 are positive, implying that firms would be able to in-
crease expected profits by decreasing their second-round bids by a small margin. We reject
H0 with a 5% significance level for all combinations of (x, δ). In terms of magnitude, the
numbers seem quite large, considering how loose our inequality is. For example, looking
at (x, δ) = (98%,1%), we see that the bidder can increase its expected profits by around
1.7 million yen, on average, by decreasing its second-round bids by 2%. Relative to the
mean reserve price of about 83 million yen for auctions that proceed to the second round,
this seems substantial. Our results suggest that bidders are not bidding competitively.

Bounding Damages from Collusion We now consider using the expected profit gains
computed in Table 4 to put bounds on damages from collusion. Because we compute ex-
pected profit gains by simply comparing profits from using current strategies with those
from using alternative strategies, our estimates of foregone profits are also consistent esti-
mates of how much cartel members stand to gain by deviation under the null of collusion.44

40We can take expectations of equation (6) with respect to I to obtain ∆πi|I = EI [∆πi|H]. ∆πi|I is equal
to the expression in which Pr(·|H) is replaced by Pr(·|I) and EH is replaced by EI in the expression for
∆πi|H.

41We use bootstrap to compute our standard errors. Note that we can estimate ∆πi|I as a semiparamet-
ric M-estimator with one finite parameter of interest, ∆πi|I , and an infinite dimensional nuisance parameter
hH(·). Cheng and Huang (2010) show that bootstrap confidence intervals for M-estimators yield asymptoti-
cally correct coverage probability. We estimate h(·) using a linear regression of (b2i ,minj b

2
j , b

1
i ,minj b

1
j ) as

well as a region, year and project fixed effects. The confidence intervals are based on 100 bootstrap estimates.
42We have implicitly assumed that both J andH include observable auction characteristics.
43Note that we do not need δ to be small for the tests to be valid. The validity of the tests do not depend on

whether the bidder loses to i(1) by a small or a large margin.
44The amount of money that cartel members are willing to forego today in order to maintain collusion is

one way of gauging the sustainability of cartels. If bidders are willing to forego large amounts of money
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∆πi|I (Yen)
x = 99.0% 98.5% 98.0% 97.5% 97.0% N

δ = 1% 1,012,278 1,542,406 1,747,725 1,761,603 1,667,326 4,499
(173,089) (266,948) (318,516) (354,170) (384,993)

3% 554,285 939,417 1,205,290 1,338,467 1,328,077 26,008
(106,318) (155,842) (199,131) (237,467) (264,995)

5% 414,559 732,801 978,444 1,115,560 1,123,030 42,141
(76,027) (117,492) (155,527) (188,222) (212,365)

15% 293,715 532,802 723,329 841,389 856,455 66,124
(52,882) (83,946) (112,661) (137,651) (155,762)

Note: Bootstrap standard errors are reported in parentheses. All the numbers are in Yen.

Table 4: Expected Gain in Profits from Bidding xb2i .

Given that, under the standard repeated-game model of collusion, deviation profits must be
lower than the difference between the continuation value of collusion and that of defection,
our estimates of deviation profits can be used to bound the differences in the continuation
values of cartel bidders. We then use the fact that the differences in continuation values are
decomposed into a price effect and an efficiency effect to estimate bounds on the damages
of collusion under the null that bidders are colluding.

In order to implement these ideas, consider a standard repeated-game model of a bid-
ding ring in which bidders take turns winning. The key incentive compatibility constraint
implied by subgame perfection is as follows:

[Deviation Profit] ≤ V Coll
i − V D

i , (8)

where the left-hand side of the inequality is today’s gain by deviating from prescribed play
and the right-hand side of the inequality is the difference between the continuation value
of colluding (V Coll

i ) and that of deviating (V D
i ). Note that our estimates in Table 4 are

consistent lower-bound estimates of deviation profits under the null of collusion (under the
assumption of private values, r ⊥ c, and that bids are above costs). Assuming that the
cartel plays static Nash after a bidder defects,45 the difference in continuation values can

today to maintain collusion, it suggests that the cartel is that much more resilient.
45This is not an innocuous assumption. In general, the optimal punishment is not static Nash reversion. On

the other hand, renegotiation may be an important consideration. See, e.g., Farrell and Maskin (1989).
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be expressed in terms of the differences in profits under collusion and competition:

V Coll
i −V D

i

= E
∑
t

[β(1− δ)]t{Pr(i wins at t|Coll)(bColl
i,t − ci,t)− Pr(i wins at t|NE)(bNE

i,t − ci,t)},

where β is the discount factor, δ is the probability of collusion breaking down, Pr(i wins at t|Coll)
is the probability that i wins future auction t under collusion, Pr(i wins at t|NE) is the
probability that i wins auction t under competition, and bColl

i,t and bNE
i,t denote i’s bids con-

ditional on the event that i wins under collusion and competition.46 The expectation in
the expression integrates over the realization of costs and bids in the future. Summing the
above expression across all auction participants, we obtain an expression that is useful for
analyzing the welfare implications of collusion:∑

i

{V Coll
i −V D

i }

= E
∑
t

[β(1− δ)]t{(bColl
win,t − cColl

win,t)− (bNE
win,t − cNE

win,t)}

= E
∑
t

[β(1− δ)]t (bColl
win,t − bNE

win,t)︸ ︷︷ ︸
price incr.

−E
∑
t

[β(1− δ)]t (cColl
win,t − cNE

win,t)︸ ︷︷ ︸
cost changes.

, (9)

where bColl
win,t and cColl

win,t denote the winning bid and the cost of the winner under collusion
in future auction t. Similarly, bNE

win,t and cNE
win,t denote the winning bid and the cost of the

winner under competition. Note that expression (9) has a very intuitive interpretation. The
first term on the right-hand side is the discounted sum of expected price elevations under
collusion relative to competition. The second term is the discounted sum of expected cost
changes (i.e., efficiency changes) under collusion relative to competition. Expression (9)
simply states that the sum of differences in continuation values,

∑
i{V Coll

i − V D
i }, should

be attributed to either price increases or possible efficiency gains from colluding.
Combining expressions (8) and (9), we can construct an inequality that links the sum

of deviation profits to expected price increases:∑
i

[Deviation Profit] +E
∑
t

[β(1− δ)]t(cColl
win,t− cNE

win,t) ≤ E
∑
t

[β(1− δ)]t(bColl
win,t− bNE

win,t).

46Because of the multi-round nature of the auctions, the actual realization of bColl
i,t and bNE

i,t may correspond
to bidder i’s first round bid or later round bids.
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If allocation under collusion is equally efficient as under competition, the second term in
the left-hand side of the above expression is zero. This would be the case, for example,
if allocation under Nash and collusion are both efficient. If allocation under collusion is
less efficient, then the second term will be strictly positive. This would be the case if, for
example, collusion takes the form of a bid rotation scheme that does not take into account
cost differences across colluding firms. In either case, we have∑

i

[Deviation Profit] ≤ E
∑
t

[β(1− δ)]t(bColl
win,t − bNE

win,t). (10)

We now use expression (10) to bound damages inflicted by collusion. In particular, we
use deviation profits of 856 thousand yen associated with the strategy xb2i with x = 97.0%

and δ = 15% (corresponds to the bottom right column of Table 4) to evaluate the left-hand
side of expression (10). Since there are about 7.9 bidders who lose to i(1) by less than 15%
in the first round among auctions that proceed to the second round, this gives us a lower
bound on total deviation profits of about 6.8 million yen.

The last step in obtaining average price increases under collusion is to specify the dis-
count factor and the rate at which cartels break down. We calibrate β using an annual
discount rate of 0.9. Since the average number of auctions in which a firm participates in a
given year is about 3.9, we set β to 0.93.47. We calibrate δ, the rate of cartel death per year,
to 0.17, estimated by Harrington and Wei (2017).48 We obtain a lower-bound estimate on
price increases of about 519 thousand yen, which is about 0.6% of the mean winning bid
(1.0% of the median winning bid) of the sample.

Before concluding this subsection, we make a few remarks. First, it is possible to esti-
mate profit gains from using alternative strategies conditional on various observables, such
as year, location, project type, etc., without pooling across auctions and bidders with differ-
ent characteristics. In principle, we can even estimate profit gains firm by firm. However,
the estimation of profit gains is quite data intensive, because it requires many auctions that
advance to the third round. The number of auctions in our dataset that reach the third round
is not enough for us to obtain reliable estimates at a granular level. In the next subsection,
we construct an alternative test that is less data intensive, and we apply it to each firm.

Second, a test of competition based on an inequality that pools across observables is, in

47(0.9× 0.83)1/3.9 ≈ 0.93
48There is a small literature that estimates the duration of cartels. The average duration of cartels reported

in previous studies is about 5-7 years (See Harrington and Wei, 2017, Levenstein and Suslow (2006)). These
duration estimates correspond to a hazard of about 18% to 13% per year assuming a constant hazard.
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some ways, stronger than a test based on an inequality that conditions on observables. If
the pooled inequality is violated, then the inequality must be violated for some observables.

5.2 Idiosyncratic Factors that Affect Bids

In this section, we provide an alternative test of collusion based on the notion that, in the
absence of coordinated bidding, there are idiosyncratic factors that affect how the final bid
is determined. In order to motivate our model, we start with a discussion of Dyer and Kagel
(1996), a study of bidding behavior based on interviews with executives of the construction
industry in the U.S. The study illustrates the complexities of the bid formulation process
as well as the seemingly random factors that affect the final bid. For example, in their
discussion of the bid formulation process, Dyer and Kagel (1996) note as follows:

Right up until the moment bids are closed a GC [general contractor] will be
working with SCs [subcontractors], confirming the scope of activity associated
with the SCs’ bids, and accepting/ arguing for cuts in the SCs’ bids (a mem-
ber of the GC’s bid team will be stationed at the bid site to fill in bid values
moments before the bid closing). It is not uncommon for major SCs’ bids to
arrive within the last 10-20 minutes before the bid closing, resulting in chaotic
last minute interactions with SCs.

They further note that the subcontractors’ bids received by the general contractor are
often subject to randomness:

...failures to bid a GC may result from the chaotic, last minute submission
of SCs’ bids (and changes in these bids) that characterize the industry, so that
an SC may not get through to all the GCs. To the extent this last element
dominates, variation in SCs’ bids might best be attributed to pure chance.

Dyer and Kagel (1996) also describe a number of other factors that affect bidding, for
example, failure to properly include certain aspects of the work in its cost estimates, and
being “too greedy”, presumably in reference to a bid that is higher than is typical. They
report that

the “mistakes” identified here are, apparently, endemic to the bidding pro-
cess.
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Other studies of construction firms also document evidence of idiosyncratic randomness
affecting the outcome of the final bid (See, e.g., Laryea and Hughes, 2008). While it
is certainly possible that idiosyncratic randomness affects only a small component of the
final bid and that bidders are playing optimally to first-order approximation, the presence
of at least some idiosyncratic shocks seems relatively well documented. In order to capture
these features of the bidding process, we directly model the bidding strategy of the firms as
depending on bidder costs, history of play, and at least one idiosyncratic optimization error.
Our model offers a way to incorporate idiosyncratic factors that affect bids in a relatively
unrestricted way.

Model of Competitive Bidding with Idiosyncratic Factors We extend the basic
model of competitive bidding by adding noise to the bidder’s bid. Specifically, we let
bidder i’ round r bid (normalized by the reserve price) to depend on bidder i’s costs, ci,
history of play up to round r, hri as well as a vector of idiosyncratic shocks, xri ∈ RK as
follows:

bri (ci, x
r
i ;h

r
i ). (11)

The only difference between this model and the standard model of bidding is the presence
of xri . In the following analysis we assume that xri is one-dimensional (K = 1), but the
analysis remains the same for K > 1.

The key substantive assumption that we impose on the null hypothesis of competition
(i.e., no coordinated bidding) is that xri is an optimization error that is independent of factors
that determine bidder j’s bid, brj :

Assumption 1: (Independence) If bidders do not coordinate their bids, xri is inde-
pendent of factors that determine brj :

xri ⊥ (cj, x
r
j , h

r
j) (j 6= i),

where xrj is the idiosyncratic factor that affects bidder j’s bid in round r.

This assumption is motivated by the descriptive studies documenting that, in the ab-
sence of coordination, the exact bid value is likely to be partly determined by idiosyncratic
factors. The term xri captures the (round-r specific) idiosyncratic factor that determines the
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realization of bidder i’s bid and that other bidders do not know about.49 This is our sub-
stantive assumption on competition. We interpret violation of this assumption as suggesting
coordinated bidding.

We make a few remarks on this assumption. The first is the relationship between As-
sumption 1 and Quantal Response Equilibria (QRE) of McKelvey and Palfrey (1995). We
show in the Appendix that it is possible to formulate the continuous strategy version of the
QRE as expression (11). In particular, because players’ strategies place positive density on
all possible bids in QRE, we can take xri as the random number that determines the actual
realization of the bid. We can then show that xri satisfies Assumption 1. Similarly, if bid-
ders play trembling-hand strategies, xri can be taken as the trembles and Assumption 1 is
satisfied.

The second remark is on mixed strategies. While the independence assumption is most
natural when bidders are boundedly rational, the assumption can be satisfied with rational
bidders if bidders use mixed strategies.50 Mixed strategies can also be formulated as ex-
pression (11) by taking xri as the random number that determines the actual realization of
the bid. By construction, xri is independent of brj .

In addition to the independence assumption, we also impose a few technical assump-
tions. First, we assume that bri is strictly monotone in xri . While this assumption may seem
very restrictive, this assumption amounts to a suitable relabeling of the variables in many
applications.51 In particular, we assume that bri is continuously differentiable and the deriva-
tive is uniformly bounded. Of course, monotonicity of bri only implies almost everywhere
differentiability and not continuous differentiability. However, the stronger assumption of
continuous differentiability is needed for constructing our empirical tests which will take
the form of regression discontinuity. We also assume that ci and xri admits density and
impose a support condition on ci and xri .

49Correlation in xri across rounds is ruled out by Assumption 1. To see this, note that Assumption 1 implies
xri ⊥ hrj , where hrj is the observed history of bidder j at round r. The history includes the lowest bids from
previous rounds. In particular, if bidder i is the lowest bidder in round r−1, hrj includes br−1i . Consequently,
xri ⊥ hrj implies xri ⊥ b

r−1
i , which also implies xri ⊥ x

r−1
i .

50See e.g., Hortaçsu and Puller (2008) and Hortaçsu et al. (2019) for evidence of bounded rationality
among firms that participate in electricity auctions.

51For example, suppose bri (ci, x
r
i ;hri ) = βci + (xri )2. By defining x̃ri as x̃ri = (xri )2, we can express the

bidding function as follows: bri (ci, x̃
r
i ;hri ) = βci + x̃ri . Then, x̃ri will still be independent of xrj and bri is

monotone in x̃ri .
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Assumption 2 ∂bri (ci,x
r
i ,h

r
i )

∂xri
is continuous with respect to xri and bounded, m <

∂bri (ci,x
r
i ,h

r
i )

∂xri
< M for some m,M > 0.

Assumption 3 ci admits smooth density that is positive and bounded. Moreover,
xri admits a conditional density fxri |ci that is smooth, positive and bounded:

0 < m′ < fci(·), fxri |ci(·|c
r
i ) < M ′ <∞

for some m′,M ′ > 0.

Assumption 4 For each bid b in the support of bidder i’s bid distribution and for each
ci, there exists xri such that bri (x

r
i , ci;h

r
i ) = b.52

Our independence assumption, together with Assumptions 2-4 imply that there exists a
completely unpredictable component to the realization of the rival’s bids. This implies that
bids of two different bidders cannot be linked deterministically, and in particular, it implies
that bri − bri(1) cannot have a kink in the distribution at bri − bri(1) = 0 (or at any other point).
The following proposition states this formally.

Proposition 1 Suppose that Assumptions 1 through 4 hold. For each h > 0, the probabil-

ity that bri − bri(1) falls in a small band to the left of 0, (i.e., bri − bri(1) ∈ [−h, 0)), conditional

on the event that bri − bri(1) falls within a small band h around 0, (i.e., bri − bri(1) ∈ [−h, h]),

must converge to 0.5 as h goes to zero:

lim
h→+0

Pr
(
bri − bri(1) ∈ [−h, 0)

)
Pr
(
bri − bri(1) ∈ [−h, h]

) = 0.5.

Moreover,

lim
h→+0

E

[
1{

bri−bri(1)<0
}∣∣∣∣|bri − bri(1)| = h

]
= 0.5. (12)

The second expression simply states that the probability of event bri−bri(1) = −h conditional
on event |bri − bri(1)| = h, converges to 0.5 as h → +0. The second expression is useful
because it is an implication that can be tested directly using a nonparametric regression.
Proof of Proposition 1 is in the Appendix.

52This assumption does not require the bid to have full support. Bajari and Hortacsu (2005) has a discussion
of imposing full support on the realized bids in an auction environment.
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For competitive auctions (i.e., auctions that satisfy Assumptions 1 through 4 for all i
and r), the conditional expectation of 1{

br
i(2)
−br

i(1)
<0

} converges to 0.5 as in expression (12).

If there are both competitive and collusive auctions in the data, the conditional expectation
of 1{

br
i(2)
−br

i(1)
<0

} will be a weighted average of two conditional expectations: one for the

set of competitive auctions and the other for the set of collusive auctions with weights given
by the share of competitive and collusive auctions. Given that the conditional expectation
must be 0.5 for the set of competitive auctions and given that it must be nonnegative for
collusive auctions, the extent to which the conditional expectation is different from 0.5
gives us a bound on the share of competitive auctions. The following corollary states this
formally.53

Corollary Let sr(h) (r = 2, 3) denote the share of competitive auctions among the set of

auctions for which bri(2) − bri(1) = h. Let sr(0) be the lim sup of sr(h) as h→ 0. Then,

sr(0) ≤ 2× lim sup
h→+0

E

[
1{

br
i(2)
−br

i(1)
<0

} ∣∣|bri(2) − bri(1)| = h

]
.

Note that when the limit of the conditional expectation is 0.5, the bound on the share
of competitive auctions is 1. The bound is informative when the limit of the conditional
expectation is less than 0.5.

Finally, another implication of our assumptions is that the set of bidders who are marginally
outbid by i(1) in the reauction should, on average, look similar to the set of bidders who
marginally outbid i(1). In particular, the average winning bid of the five preceding auctions
we defined toward the end of Section 4, bbeforei , should be the same, in expectation, for the
former and the latter set of bidders.54 The next proposition states this claim formally.

Proposition 2 Suppose Assumption 1 through Assumption 4 hold. Assume also that bbeforei

has finite moments and that (bbeforei , b2i − b2i(1)) has continuous and positive joint density.

53The following bound is computed under the extreme assumption that the conditional expectation is 0
for collusive auctions (which corresponds to the highest share of competitive auctions). This assumption is
reasonable if collusion is always all-inclusive. However, the conditional expectation for collusive auctions
would be significantly higher than 0 if collusion is partial. In this sense, the bound is also informative about
the prevalence of partial cartels.

54Recall that, for each auction n, we define bbeforei,n as follows:

bbeforei,n =
1

5

m=n−1∑
m=n−5

bwin
m ,

where bwin
m (m ∈ {n− 5 · · ·n− 1}) are the winning bids of the five auctions preceding auction n.
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Then, the average of bbeforei should be the same for the set of bidders who marginally outbid

i(1) in the second round and the set of bidders who are marginally outbid by i(1) in the

second round:

lim
b2i−b2i(1)→+0

E
[
bbeforei

∣∣∣ b2i − b2i(1)] = lim
b2i−b2i(1)→−0

E
[
bbeforei

∣∣∣ b2i − b2i(1)] .

This proposition justifies our regression discontinuity analysis for bbeforei in Section 4.55

5.2.1 Formal Test

We now use Proposition 1 to construct a formal test of the null. In order to construct
our test, note that expression (12) can be expressed as limX→+0E[Y |X] = 0.5, where
Y = 1{bri−bri(1)<0}, X = |bri − bri(1)|, and 1E is an indicator function that is equal to one if
and only if event E is true. Note that bri and bri(1) are normalized bids. Consistent estimates
of a conditional expectation of the form E[Y |X] at X = +0 can be obtained by a local
polynomial regression. In particular, consider the minimizer of the following objective
function

β̂ = arg min
(b0···bp)∈Rp+1

N∑
n=1

(Yn − b0 − b1Xn − · · · − bpXp
n)2K

(
Xn

hN

)
, (13)

where K (·) is a kernel, hN is a bandwidth, p is the order of the local polynomial re-
gression function. The first element of β̂ is a consistent estimate of limX→+0E[Y |X] if
hNN

1/(2p+3) → 0 (Fan and Gijbels, 1992). In practice, we use p = 1 and follow the
bias correction method proposed in Calonico et al. (2018, 2019) to compute the confidence
interval. We use the Epanechnikov kernel for K(·) and a mean square error optimal band-
width for hN . This allows us to test expression (12).

Results for All Samples We first test for expression (12) with r = 2 using all auc-
tions in which there is a second round of bidding. For each auction n, we compute
Yn = 1{b2

i(2)
−b2

i(1)
<0} and Xn = |b2i(2) − b2i(1)| and obtain an estimate of limX→+0E[Y | X]

using expression (13). Column (1) of Table 5 presents our results. We find that the point
estimate is 0.014 and the standard error is 0.002. We find that 0.5 is not contained in the

55An analogous result for bafteri will not hold if winning an auction today affects how the bidder bids in
the future.
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(1) (2)
Round 2 Round 3

Estimate 0.0136 -0.0063
(0.0024) (0.0061)

Bandwidth 0.1169 0.0143
Sample Size 7,839 902
Note: The estimate is computed using a local linear
regression with bias correction (Calonico et al., 2018,
2019). We use the Epanechnikov kernel. Standard
errors are reported in parenthesis.

Table 5: Estimate of 1{
br
i(2)
−br

i(1)
<0

} conditional on |bri(2) − bri(1)| → 0.

The horizontal axis is |b2i(2) − b
2
i(1)| (Left Panel) and |b3i(2) − b

3
i(1)| (Right Panel). The bars in the

graphs indicate 95% confidence intervals.

Figure 5: Binned Scatter Plots of 1{b2
i(2)
−b2

i(1)
<0} (Left Panel) and 1{b3

i(2)
−b3

i(1)
<0} (Right

Panel).

95% confidence interval which leads us to reject the null. The point estimate suggests a (lo-
cal) upper bound on competitive auctions of 2.8% (See Corollary). The result suggests that
almost all auctions that reach the second round are uncompetitive, and moreover, almost
all of the bidding rings are all-inclusive.56 The left panel of Figure 5 is the corresponding
binned scatter plot of Yn. The figure shows that the bin averages are far from 0.5.

Next, we test for expression (12) with r = 3 using the set of auctions in which there

56If the bidding ring is partial, we would expect competitive bidders to outbid i(1) some of the time,
resulting in the conditional expectation to converge to a number that is higher than what we estimate.
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is a third round of bidding. For each of these auctions, we set Yn = 1{b3
i(2)
−b3

i(1)
<0} and

Xn = |b3i(2) − b3i(1)| and estimate the conditional expectation, E[Y |X], at X = 0 using
expression (13). The results are reported in Column (2) of Table 5. We find that the point
estimate is −0.006 and the standard error is 0.006. Again, we reject the null that E[Y |X]

converges to 0.5 as X → +0. The right panel of Figure 5 is the corresponding binned
scatter plot, which again shows that the bin averages are far from 0.5.

Results for Each Firm We now apply our test firm by firm. Specifically, for each firm i,
we collect all auctions in which 1) firm i participates; 2) the auction proceeds to the second
round; 3) i is not i(1) in the first round of the auction, and 4) i bids in the second round.
We then compute Yn = 1{b2i−b2i(1)<0} and Xn = |b2i − b2i(1)| for each auction. If there are
more than 10 auctions that satisfy the four conditions above, we test for expression (12) for
bidder i. We are able to run our test on a total of 1,098 firms.

Table 6 reports our results. We report the results by groups of 50 firms, starting from
the set of firms that win the most number of auctions during the sample period. In other
words, the first row reports the results for the 50 largest firms by the number of auctions
won, the second row reports the results for the next 50 largest firms, and so on.

Column (1) of the table reports the number of firms for which we compute the test
statistic and Column (2) reports the number of firms for which we reject expression (12).
We find that a total of 1,066 firms bid in a manner inconsistent with our benchmark of com-
petitive bidding (out of 1,096 firms for whom we compute the test statistic). In particular,
we find that 613 firms are uncompetitive out of the top 1,000 firms. While these results
do not account for the fact that we are testing multiple hypotheses, controlling for the false
discovery rate at 5% only reduces the number of uncompetitive firms to 1,059.57

Column (3) of the table reports the rejection probability, computed by dividing the
numbers in Column (2) by 50. The rejection probability is around 75% for the largest 1-
400 firms and it is around 50% for the 401-750 largest firms. The number remains above
20% for all groups larger than group 1,450-1,500. If we compute the rejection probability
taking the number of firms tested as the denominator, it is over 95%.

Columns (4)-(6) of Table 6 report the average number of times a firm participates (Col-
umn (4)), the average number of times a firm bids in Round 2 (Column (5)), and the average
total award amount (Column (6)). These averages are taken over all of the firms within a

57We use the procedure proposed by Benjamini and Yekutieli (2001) to control for the false discovery rate.
See Schurter (2017) for an approach that controls for the asymptotic family-wise error rate in a very similar
setting as ours.
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group. Column (7) reports the average number of auctions that satisfy criteria 1) - 4) for
computing the test statistic (for the set of firms that we compute the test statistic). For
Column (7), the averages are taken over a smaller number of firms.

The total number of auctions awarded to uncompetitive firms that we identify is 15,583,
or close to 37.1% of the total number of auctions in our sample. The total award amount
of these auctions is about $18.6 billion, or 44.2 % of the total value of the auctions in the
sample.

While our dataset accounts only for public construction projects procured at the national
level, firms that we identify as uncompetitive are also active in local public procurement
auctions. Given that the total award amount of public construction projects in Japan is
about $200 billion per year, or approximately 4% of Japan’s GDP, cartel activity among
construction firms may have economy-wide significance.58

Interaction among the Uncompetitive Firms In order to provide information on the
participation patterns of the firms that we identify as uncompetitive, we compute summary
statistics that we report in Table 3 of Section 3, but restricting the sample to only those
that we identify as uncompetitive. Letting I denote the set of 1,066 firms that we reject
the null of competition, we compute the average number of other bidders in I that a firm
bids with, the number of unique bidders in I that a bidder bids with, and the shares of close
competitors.

Table 7 reports the results separately for four sets of firms grouped by the total number
of auctions in which the firm participates in our sample. The top row corresponds to the
results for the 30 largest firms in I that participate in more than 500 auctions. The second
row corresponds to the set of 537 firms that bid on 100 - 500 auctions, and so on.

Column (1) reports the average number of auctions in which a firm participates. Col-
umn (2) reports the average number of other uncompetitive bidders that bidders face. We
find that the average number of uncompetitive rival bidders is above 6 for the largest group
and it is around 4-5 for all other groups. Given that the average total number of competitors
that a bidder faces (competitive or not) in an auction is around 9 (see Table 3), this result
implies that about half of the rival bidders that an uncompetitive bidder faces are also in I .

Column (3) reports the number of unique opponents in I against whom a firm bids in
the sample. In Columns (4) - (8), we report the share of auctions in which the bidder’s

58Also, the rules governing procurement auctions for municipalities and prefectures are very similar to the
ones used by the Ministry of Land, Infrastructure, and Transportation.
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(1) (2) (3) (4) (5) (6) (7)
Firms # Firms # Firms (2) / Particip. Particip. Award Obs.Tested Reject # Firms Round 1 Round 2 Amt.
1 - 50 46 43 86% 908.8 85.2 8,600 59.0

51 - 100 46 42 84% 447.2 61.8 4,660 42.5
101 - 150 44 41 82% 315.0 43.8 2,908 30.9
151 - 200 39 37 74% 244.8 31.0 2,331 23.8
201 - 250 39 38 76% 206.8 27.4 1,883 21.5
251 - 300 40 37 74% 204.3 29.0 2,318 22.4
301 - 350 39 38 76% 193.0 27.8 1,729 21.4
351 - 400 36 35 70% 162.9 22.1 1,604 18.3
401 - 450 35 32 64% 176.0 21.1 1,915 17.7
451 - 500 31 31 62% 150.3 21.5 1,634 20.3
501 - 550 24 20 40% 126.7 17.7 1,204 16.6
551 - 600 28 27 54% 127.1 18.0 1,232 16.6
601 - 650 29 29 58% 130.2 17.5 1,109 16.0
651 - 700 24 23 46% 117.7 16.9 1,081 17.3
701 - 750 24 23 46% 111.4 15.9 1,291 15.8
751 - 800 23 23 46% 114.5 15.4 1,096 17.5
801 - 850 24 23 46% 111.8 16.8 1,290 16.2
851 - 900 21 21 42% 95.8 14.2 1,293 14.6
901 - 950 27 27 54% 107.7 16.4 756 15.5

951 - 1000 23 23 46% 108.5 14.3 945 15.0
1001 - 1050 18 17 34% 76.6 12.0 589 14.9
1051 - 1100 20 19 38% 91.6 14.3 726 16.1
1101 - 1150 11 11 22% 79.4 11.5 602 15.3
1151 - 1200 18 18 36% 83.8 13.2 568 13.9
1201 - 1250 13 13 26% 73.4 10.8 602 16.5
1251 - 1300 16 16 32% 79.3 12.7 675 14.1
1301 - 1350 18 18 36% 72.7 11.2 563 13.1
1351 - 1400 9 9 18% 71.2 9.8 511 17.2
1401 - 1450 16 16 32% 72.0 12.1 654 15.4
1451 - 1500 9 9 18% 69.5 9.3 513 14.1
1501 - 1550 10 10 20% 64.7 9.6 521 14.8
1551 - 1600 15 15 30% 64.6 9.7 401 12.7
1601 - 1650 10 10 20% 57.3 9.3 431 12.6
1651 - 1700 8 8 16% 58.4 9.0 427 15.5
1701 - 1750 10 10 20% 63.2 10.2 482 13.7
1751 - 1800 13 13 26% 67.3 10.5 626 14.5
1801 - 1850 13 13 26% 65.7 9.7 519 13.2
1851 - 1900 5 5 10% 48.7 6.9 310 13.8
1901 - 1950 8 8 16% 58.4 9.3 327 13.6

1951 - 21287 216 215 1% 10.3 1.7 66 12.5
Total 1098 1066 5% 21.2 3.2 170 19.7

Table 6: Test of Competition for Each Firm by Groups of 50 Firms.
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(1) (2) (3) (4) (5) (6) (7) (8) (9)

Group
Partici-
pation

Rival
Bidders

Unique
Rivals S1 S2 S4 S10 S15 Obs.

500+
825.7 6.1 151.8 59.0 53.1 42.8 23.9 10.7

30(310.7) (1.0) (88.9) (16.3) (15.9) (13.5) (8.3) (5.2)

100 - 500
183.7 5.1 103.5 37.7 33.0 27.1 16.4 11.3

537(82.5) (1.7) (62.5) (19.2) (18.2) (16.3) (12.6) (10.9)

50 - 100
74.3 4.7 51.1 46.8 40.1 31.8 16.9 10.3

387(13.8) (1.7) (28.8) (19.4) (17.7) (15.6) (9.5) (7.9)

15 - 50
40.8 4.3 31.6 52.0 43.7 34.0 17.6 12.5

112(7.5) (1.8) (17.6) (19.7) (18.3) (15.9) (13.6) (16.0)

Total
147.1 4.9 78.3 43.1 37.3 30.0 16.9 11.0

1,066(151.3) (1.7) (59.0) (20.1) (18.6) (16.3) (11.6) (10.5)

Table 7: Summary Statistics of Bidders Identified as Non-Competitive.

close opponents participate. Close opponents are defined in the same way as in Table
3, but restricted to other bidders in I . Column (4) corresponds to the share of the most
frequent rival among I and Column (5) corresponds to the share of the second most frequent
rival in I . Column (6), (7), and (8) correspond to the share of the fourth, tenth and the
fifteenth most frequent rival, respectively. We find that the share of the closest rival (S1)
is around 40% on average, which means that a bidder bids with its closest rival in I on
about 40% of the auctions. The share for the fifteenth closest rival (S15) is about 10%,
implying that the fifteenth closest rival participates in about 10% of the auctions. The table
illustrates the repeated nature of the interaction among the set of bidders that we identify
as uncompetitive.

Discussion of Our Detection Method We have discussed several ways of detecting
collusion in this section. We now briefly discuss whether our ideas are useful even when
bidders become aware of our detection strategy.

As a general point, proposing a detection method can be thought of as putting an addi-
tional constraint on the pattern of bidding that a ring can safely engage in. Even if bidding
rings respond to a new detection method, the method can still serve a useful purpose by
making it potentially harder to sustain collusion, lessening the damages from collusion, or
making it easier to detect collusion with existing methods. For example, one simple way
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for rings to avoid being detected by our method is to decrease their bids so that the auction
ends in the first round. This will diminish the damages from collusion (as the bids have to
be lowered, on average) and decrease the incentive to collude.

There are other ways to avoid our detection method, such as changing the identity of
the lowest bidder across rounds or having the lowest bidder bid substantially less than
everybody else. These responses are likely to impose substantial costs on the bidding ring
or make detection easier by other means. For example, if the bidding ring changed the
identity of the lowest bidder from round to round, this would require at least two bidders
to incur the cost of estimating the project. It would also incentivize the designated bidder
in Round 1 to bid more aggressively and win the auction in Round 1 as a different firm
will win the project in Round 2. Hence, designating multiple winners may come at a cost,
potentially making it harder to sustain collusion. Alternatively, if one bidder submits a bid
that is substantially less than everybody else’s, this would be quite suspicious if the bidding
ring is all-inclusive. It may put the ring at risk of being detected by other methods.

6 Conclusion

In this paper, we document large-scale collusion among construction firms in Japan using
bidding data in reauctions. Although the exact details of the auction vary from setting
to setting, rebidding is a common feature in many government procurement projects. Our
approach may provide a useful starting point when screening for collusion in other settings.
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Appendix

Omitted Proofs

Proof of the Lemma

Proof. We first prove that the distribution of bidder i’s cost, ci, conditional on {b1i , minj b
1
j ,

b2i , minj b
2
j , {r < minj b

1
j}} is independent of whether or not the auction ends in the second

round. Let g(·) denote the density of ci and Fr(·) denote the distribution function of the
reserve price. Then,

g(ci|b1i ,min
j

b1j , b
2
i ,min

j
b2j , {r < min

j
b1j}, {r < min

j
b2j})

=
Pr(ci, b

1
i ,minj b

1
j , b

2
i ,minj b

2
j , {r < minj b

1
j}, {r < minj b

2
j})

Pr(b1i ,minj b1j , b
2
i ,minj b2j , {r < minj b1j}, {r < minj b2j})

=
Pr(r < min{minj b

1
j ,minj b

2
j}|ci, b1i ,minj b

1
j , b

2
i ,minj b

2
j)× Pr(ci, b

1
i ,minj b

1
j , b

2
i ,minj b

2
j)

Pr(r < min{minj b1j ,minj b2j}|b1i ,minj b1j , b
2
i ,minj b2j)× Pr(b1i ,minj b1j , b

2
i ,minj b2j)

.

Given that r is independent of ci, it is also independent of b1i ,minj b
1
j , b

2
i , and minj b

2
j .

Hence, the last expression is simplified as follows:

Pr(ci, b
1
i ,minj b

1
j , b

2
i ,minj b

2
j)×

Pr. go to Round 3︷ ︸︸ ︷
Fr(min{min

j
b1j ,min

j
b2j})

Pr(b1i , minj b1j , b2i , minj b2j)× Fr(min{minj b1j ,minj b2j})

=
Pr(ci, b

1
i ,minj b

1
j , b

2
i ,minj b

2
j)

Pr(b1i , minj b1j , b2i , minj b2j)

(
= g(ci|b1i ,min

j
b1j , b

2
i ,min

j
b2j)

)

=
Pr(ci, b

1
i ,minj b

1
j , b

2
i ,minj b

2
j)×

Pr. end in Round 2︷ ︸︸ ︷
max{0, Fr(min

j
b1j)− Fr(min

j
b2j)}

Pr(b1i , minj b1j , b2i , minj b2j)×max{0, Fr(minj b1j)− Fr(minj b2j)}

= g(ci|b1i ,min
j

b1j , b
2
i ,min

j
b2j , {min

j
b2j 5 r < min

j
b1j}).

Hence, the first part of the lemma follows.
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We now show the second part. By using an argument similar to above, we have

EH[ci|{r = min
j

b2j}, b2i ,min
j

b2j , (W̃
2 −W 2)],

=EH[ci|{r < min
j

b2j}, b2i ,min
j

b2j ].

Using the restriction that bidders do not bid strictly below their costs, we obtain

EH[ci|{r = min
j

b2j}, b2i ,min
j

b2j , (W̃
2 −W 2)],

5EH[b3i |{r < min
j

b2j}, b2i ,min
j

b2j ],

=hH(b2i ,min
j

b2j).

Integrating both sides over b2i and minj b
2
j for the event such that (W̃ 2 − W 2) ∩ {r =

minj b
2
j},H, we have the second part of the lemma.

Proof of Proposition 1

Proof. Let fbri−bri(1) denote the density of bri − bri(1). Assumptions 1 through 4 imply that
fbri−bri(1) exists, and that it is continuous, strictly positive, and bounded above by some
constant. This is shown in Online Appendix V. In what follows, we take this fact as given.

Take any ε > 0. Define ε as follows:

ε = ε× fbri−bri(1)(0)(> 0).

Now take δε > 0 so that the following is satisfied for all |t| < δε:

|fbri−bri(1)(t)− fbri−bri(1)(0)| < ε.

This is possible because fbri−bri(1) is continous. For each δ < δε, consider the probability
that bri − bri(1) falls in the interval [−δ, 0):

Pr
(
bri − bri(1) ∈ [−δ, 0)

)
= δ × fbri−bri(1)(0) +

∫ t=0

t=−δ

(
fbri−bri(1)(t)− fbri−bri(1)(0)

)
dt.

≤ δ × fbri−bri(1)(0) +

∫ t=0

t=−δ
εdt

= δ × fbri−bri(1)(0)(1 + ε),
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Similarly, consider the probability that bri − bri(1) falls in an interval [−δ, δ):

Pr
(
bri − bri(1) ∈ [−δ, δ)

)
= 2δ × fbri−bri(1)(0) +

∫ t=δ

t=−δ

(
fbri−bri(1)(t)− fbri−bri(1)(0)

)
dt.

≥ 2δ × fbri−bri(1)(0)(1− ε),

Hence,
Pr
(
bri − bri(1) ∈ [−δ, 0)

)
Pr
(
bri − bri(1) ∈ [−δ, δ]

) ≥ 1 + ε

2(1− ε)
,

where the right hand side converges to 1/2 as ε converges to 0. Hence, we have shown that

lim inf
h→0

Pr
(
bri − bri(1) ∈ [−h, 0)

)
Pr
(
bri − bri(1) ∈ [−h, h]

) ≥ 1/2.

We can similarly bound the lim sup by 1/2 which concludes the proof.
We now show the second part of the proposition:

lim
h→0

E

[
1{

bri<b
r
i(1)

} ∣∣∥∥bri − bri(1)∥∥ = h

]
=

1

2
.

Note that

E

[
1{

bri<b
r
i(1)

} ∣∣∥∥bri − bri(1)∥∥ = h

]
=

fbri−bri(1)(−h)

fbri−bri(1)(h) + fbri−bri(1)(−h)
.

For any ε define ε and δε as before. Then, for each δ < δε,

fbri−bri(1)(0)(1− ε) ≤ fbri−bri(1)(−δ),

fbri−bri(1)(δ) ≤ fbri−bri(1)(0)(1 + ε)

Hence,
1− ε

2(1 + ε)
≤

fbri−bri(1)(−h)

fbri−bri(1)(h) + fbri−bri(1)(−h)
≤ 1 + ε

2(1− ε)
,

where both sides converges to 1/2 as ε converges to 0. This concludes the proof.
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Proof of the Continuous Strategy Version of the Quantal Response Equilibria

Proof. We show that the continuous strategy version of the Quantal Response Equilibria of
McKelvey and Palfrey (1995) satisfy the independence assumption.

The continuous action version of the Quantal Response Equilibria requires, for each
bidder i, to bid according to density gri (·) given by

gri (b
r
i ) =

eλπ
r
i (b

r
i )∫∞

0
eλπ

r
i (b
′)db′

,

where πi(bri ) denotes i’s expected payoff from bidding bri in Round r. The expected payoff
includes both the payoff from winning in round r as well as any continuation value from
future rounds. The expected profit, πri (·), depends on the bidding strategy of others, so it is
an equilibrium object that depends on bidder i’s costs, ci, and the lowest bids from previous
rounds, {minj b

p
j}r−1p=1. Let u be a random variable that is distributed uniform [0, 1). We can

express the bidding function as

bri = (Gr
i )
−1(u; ci, {min

j
b1j}r−1p=1),

where (Gr
i )
−1(·) is the inverse function of Gr

i (·) defined as follows:

Gr
i (y) =

∫ y
0
eλπ

r
i (b
′)db′∫∞

0
eλπ

r
i (b
′)db′

.

The intuition is that bidders bid all possible bids with positive density and u is simply
the random number that determines the actual bid that is played. Given that Gr

i is strictly
increasing, continuous and its image is the interval [0, 1), its inverse is well-defined on
[0, 1).

Now take the independence factor as the uniform random variable u. By construction, it
is independent of all random variables in the model, including those that determine bidder
j’s bid. u is also independent across rounds.
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Proof of Proposition 2

Proof. Let {hk} be any positive sequence converging to 0. For any ε > 0, define U ε
k ⊂ R+

and V ε
k ⊂ R+ as follows:

U ε
k =

{
x ∈ R+

∣∣∣∣‖ 1

hk
Pr
(
b2j − b2i(1) ∈ (0, hk]|bbeforej,n = x

)
− fb2j−b2i(1)|bbeforej,n

(0|x)‖ < ε

}

V ε
k =

{
x ∈ R+

∣∣∣∣‖ 1

hk
Pr
(
b2j − b2i(1) ∈ [−hk, 0)|bbeforej,n = x

)
− fb2j−b2i(1)|bbeforej,n

(0|x)‖ < ε

}
Note thatU ε

k ↗ R+ and V ε
k ↗ R+ (as k → +∞) because (bbeforei , b2i−b2i(1)) has continuous

density. Now,

E
[
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∫
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+

∫
R−Uε

k∩V
ε
k

xfbbeforej,n
(x|b2j − b2i(1) ∈ [−hk, 0))dx.

As bbeforej,n has finite moments, the second term can be made less than ε for k large, by
dominated convergence. Now consider the first term;∫

Uε
k∩V

ε
k

xfbbeforej,n
(x|b2j − b2i(1) ∈ [−hk, 0))dx

=

∫
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k∩V

ε
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(x)dx
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x
fb2j−b2i(1)|b

before
j,n

(0|x)

fb2j−b2i(1)(0)
fbbeforej,n

(x)dx+O(ε),

as k → ∞. The last expression holds because (bbeforei , b2i − b2i(1)) has positive density.
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Similarly,

E
[
bbeforej,n

∣∣∣ b2j − b2i(1) ∈ (0, hk]
]

=

∫
Uε
k∩V

ε
k

x
fb2j−b2i(1)|b

before
j,n

(0|x)

fb2j−b2i(1)(0)
fbbeforej,n

(x)dx+O(ε),

Hence, E
[
bbeforej,n

∣∣∣ b2j − b2i(1) ∈ [−hk, 0)
]

and E
[
bbeforej,n

∣∣∣ b2j − b2i(1) ∈ (0, hk]
]

can be made
as small as desired as k →∞.
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For Online Publication

Online Appendix I Sample Statistics on Attrition and Win Rates by
Rank and Round

The second and third rounds of bidding are open only to firms who submit valid first-round
bids. However, this fact does not mean that bidders who bid in the first round must bid
in the second and third rounds. In fact, a non-negligible proportion of bidders decide to
drop out of the auction. Table OA.1 reports the summary statistics on the number of valid
bids in the reauctions by the rank of the bidder in the initial round. The first row of the
table reports the number of bids in Round 2 that we would observe in the data if there were
no attrition between the initial and second rounds. The second row reports the number of
actual bids in Round 2 and the third row reports the corresponding attrition rate. The rate
of attrition is about 6.8% on average, although it is much lower for i(1), at 0.4%. Rows 4
through 6 report the corresponding statistics for the third round. We find that the attrition
rate is much higher, at 26.4%.

Table OA.2 reports summary statistics on the winning probability by rank and by ter-
minal round. The first row corresponds to the number of second-round bids that we would
observe (among auctions that end in Round 2) if there were no attrition. The numbers in

Round i(1) i(2) i(3) i(4) i(5) All

N 8,387 8,363 8,242 8,091 7,916 78,812
Valid Bid 2 8,351 7,888 7,684 7,463 7,288 73,488
Attrition Rate 0.4% 5.7% 6.8% 7.8% 7.9% 6.8%

N 1,249 1,244 1,228 1,207 1,181 11,305
Valid Bid 3 1,230 918 876 854 814 8,319
Attrition Rate 1.5% 26.2% 28.7% 29.2% 31.1% 26.4%

The table reports how many bidders submit bids in Round 2 and Round 3 conditional
on submitting a bid in Round 1. The first column corresponds to bidders who are i(1).
Out of 8,387 cases that go to the second round, 8,351 i(1) bidders submit a valid bid
in Round 2. The table also reports that, out of 1,249 cases that go to the third round,
1,230 i(1) bidders submit a valid bid in Round 3. The attrition rate is very low for
i(1) and it is significantly higher for all other positions. The sample size for i(1) is
larger than that for i(2) because some auctions only receive one valid bid.

Table OA.1: Attrition by Rank of Bidder in Round 1.
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Round i(1) i(2) i(3) i(4) i(5) i(6)+

N 7,138 7,119 7,014 6,884 6,735 35,697
Won 2 6,895 124 41 22 17 39
Win Rate 96.6% 1.7% 0.6% 0.3% 0.2% 0.1%

N 1,249 1,244 1,228 1,207 1,181 5,649
Won 3 1,191 23 9 7 3 16
Win Rate 95.4% 1.8% 0.7% 0.6% 0.3% 0.3%

The first three rows correspond to auctions that end in Round 2. The last three
rows correspond to auctions that reach Round 3. We report the number of
bids that we would observe in the absence of attrition (row 1 and row 4), the
number of winning bids (row 2 and row 5) and the win rate (row 3 and row 6).

Table OA.2: Win Rate by Round and Rank.

this row are smaller than the numbers in the first row of Table OA.1 because the first row
of Table OA.2 focuses on auctions that end in the second round (as opposed to reach the
second round). The second row of Table OA.2 corresponds to the number of winning bids.
The third row is the win rate. We find that, among the set of auctions that end in Round 2,
the win rate of i(1) is 96.6%. Rows 4-6 correspond to the statistics for auctions that reach
Round 3. Again, we find that the win rate is high for i(1), at 95.4%.

Online Appendix II Graphical Analysis of Bids by Region, Project Type,
and Time and of Homogenized bids

In this Appendix, we show that the shapes of the distributions of ∆2
12 and ∆2

23 in Figure
1 remain the same when we condition on various auction characteristics such as region,
project type, and year. We also show that homogenizing the bids (See Haile, Hong and
Shum 2006) yields similar results. Lastly, we show that the shapes of the distributions do
not depend on whether or not we normalize the bids by the reserve price. Note that for
Figures OA.1 through OA.3 and for Figure OA.6, we set ε equal to 5%, i.e., we restrict the
sample of auctions to those in which b1i(2) − b1i(1) < 5% (left panels) or b1i(3) − b1i(2) < 5%

(right panels).
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By Region

Figure OA.1 plots the histogram of ∆2
12 and ∆2

23 for four of the nine regions of Japan with
the largest number of auctions. The regions for which we show the results are Hokkaido,
Kanto, Kansai and Chubu, in decreasing order of number of total auctions.

By Project Type

In Figure OA.2, we plot the histogram of ∆2
12 and ∆2

23 for the four types of projects with
the largest number of auctions. The four types of projects are civil engineering, repair
and maintenance, paving, and communication equipment, in decreasing order of number
of total auctions.

By Year

In Figure OA.3, we plot the histogram of ∆2
12 and ∆2

23 by year.

By Number of Bidders

In Figure OA.4, we plot the histogram of ∆2
12 and ∆2

23 conditioning on the number of
bidders in the auction. The panels in the top row plot ∆2

12 and ∆2
23 for the set of auctions

in which the number of bidders is equal to or less than 9. The middle row plots auctions
in which the number of bidders is equal to 10. The bottom row plots auctions with 11 or
more bidders.

Homogenized Bids

In order to show that the shapes of the distributions of ∆2
12 and ∆2

23 remain the same even
when we simultaneously control for many observed characteristics, we homogenize the
bids by regressing the second-round (normalized) bid of bidder i in auction t on auction
characteristics as follows (See Haile, Hong and Shum 2003):

b2it = β0 + β1Reservet + β2Reserve
2
t + δNbt + δProjectTypet + δRegion−Month

t + εit, (OA-1)

where Reserve is the reserve price, δNb is a vector of dummies that correspond to the
number of bidders, δProjectType is a vector of project types, and δRegion−Month is a vector of
region-month dummies. We then take the residuals from the regression and define ∆̃2

12 as
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The left panels plot ∆2
12 for the set of auctions in which the first-round bids of i(1) and i(2) are

within 5%. The right panels plot ∆2
23 for the set of auctions in which the first-round bids of i(2)

and i(3) are within 5%.

Figure OA.1: Difference in the Second-Round Bids of i(1) and i(2) (Left Panel) and the
Difference in the Second-Round Bids of i(2) and i(3) (Right Panel), by Region.

∆̃2
12 = εi(2)t− εi(1)t and ∆̃2

23 as ∆̃2
23 = εi(3)t− εi(2)t. Because we do not include any bidder

specific covariates in the regression, the sign of b2it− b2jt is the same as the sign of ε2it− ε2jt.
This implies that ∆2

12 and ∆2
23 have the same sign as ∆̃2

12 and ∆̃2
23. Figure OA.5 plots the
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The left panels plot ∆12 for the set of auctions in which the first-round bids of i(1) and i(2) are
within 5%. The right panels plot ∆23 for the set of auctions in which the first-round bids of i(2)
and i(3) are within 5%.

Figure OA.2: Difference in the Second-Round Bids of i(1) and i(2) (Left Panel) and the
Difference in the Second-Round Bids of i(2) and i(3) (Right Panel), by Project Type.

distribution of ∆̃2
12 and ∆̃2

23.
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The left panels plot ∆12 for the set of auctions in which the first-round bids of i(1) and i(2) are
within 5%. The right panels plot ∆23 for the set of auctions in which the first-round bids of i(2)
and i(3) are within 5%.

Figure OA.3: Difference in the Second-Round Bids of i(1) and i(2) (Left Panel) and the
Difference in the Second-Round Bids of i(2) and i(3) (Right Panel), by Year.

Raw Bids

In Figure OA.6, we plot the raw difference in the second-round bids without normalizing
the bids by the reserve price. The left panels plot the second-round bid differences of i(1)
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The left panels plot ∆12 for the set of auctions in which the first-round bids of i(1) and i(2) are
within 5%. The right panels plot ∆23 for the set of auctions in which the first-round bids of i(2)
and i(3) are within 5%.

Figure OA.4: Difference in the Second-Round Bids of i(1) and i(2) (Left Panel) and the
Difference in the Second-Round Bids of i(2) and i(3) (Right Panel), by number of bidders.

and i(2). The right panels plot the second-round bid differences of i(2) and i(3). The top
panels correspond to auctions whose reserve price is between 20 and 22 million yen. The
middle and bottom panels correspond to auctions with a reserve price between 60 and 66
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Figure OA.5: Difference in the Residuals of the Second-Round Bids of i(1) and i(2) (Left
Panels) and the Difference in the Residuals of the Second-Round Bids of i(2) and i(3)
(Right Panels).

million yen and 90 and 99 million yen, respectively.59 The auctions in each row roughly
correspond to the 25%, 50% and 75% quantiles in terms of project size.

59The length of the bandwidth we use (i.e., 2 million, 6 million, and 9 million yen, respectively) is roughly
10% of the average reserve price.
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The left panels plot the raw difference in bids for the set of auctions in which the first-round bids
of i(1) and i(2) are within 5% of the reserve price. The right panels plot the raw difference in bids
for the set of auctions in which the first-round bids of i(2) and i(3) are within 5% of the reserve
price.

Figure OA.6: Raw Difference in the Second-Round Bids of i(1) and i(2) (Left Panels) and
the Raw Difference in the Second-Round Bids of i(2) and i(3) (Right Panels).

Online Appendix III Analysis of Municipal Auctions

In order to examine whether the announcement of the lowest bid can explain the observed
bidding patterns, we collect additional bidding data from three municipalities. There is
significant overlap between the participants of the municipal auctions and the participants
of the auctions in the baseline sample.60 The format of the municipal auctions is very
similar to that of the MLIT auctions with one key difference: in the municipal auctions,
none of the bids are announced at the end of each round.

The sample statistics of municipal auctions that we use are given in Table OA.3. We
report the reserve price of the auction (Column (1)), the winning bid (Column (2)), the
ratio of the winning bid to the reserve price (Column (3)), the lowest bid in each round as a

60About a third of the bidders in the municipal auctions also bid on the MLIT auctions.
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The left panel is a plot of (b1i(1), b
2
i(k)) for MLIT auctions and the right panel is for municipal

auctions. Note that b1i(1) is always larger than 1 because we condition on auctions that reach the
second round. In the left panel, b2i(k) is almost always less than b1i(1) reflecting the fact that b1i(1) is
announced to all the bidders.

Figure OA.7: Plot of b1i(1) and b2i(k) (k = 2) for Auctions that Reach the Second Round.

percentage of the reserve price (Columns (4)-(6)), and the number of bidders (Column (7)).
The sample statistics are reported separately by whether the auction concludes in Round 1,
Round 2, or Round 3.

In order to highlight the fact that, unlike in the MLIT auctions, the lowest bid is not
announced in the municipal auctions, Figure OA.7 plots (b1i(1), b

2
i(k); k = 2), i.e., the re-

lationship between the first-round bid of i(1) and the second-round bid of i(k) for MLIT
auctions (left panel) and for municipal auctions (right panel) conditional on auctions that
reach the second round. We find that b2i(k) is almost always below b1i(1) in the left panel,
reflecting the fact that i(k) knows i(1)’s first-round bid in the MLIT auctions. In the right
panel, we find that there are many instances in which b2i(k) is above b1i(1).

Despite the fact that the lowest bid is not revealed after the first auction in municipal
auctions, the bidding pattern in the second round of the municipal auctions exhibit features
that are very similar to that of MLIT auctions. Figure OA.8 replicates Figure 1 for mu-
nicipal auctions. Figure OA.8 shows that there is a kink in the distribution of ∆2

12 at zero.
The fact that the bidding pattern in the MLIT and the municipal auctions exhibit similar
features suggests that the announcement of the lowest bid is unlikely to be the reason for
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Concluding (R)eserve (W)inbid (W)/(R) Lowest bid / Reserve #
N

Round
Yen M. Yen M. Round 1 Round 2 Round 3 Bidders

(1) (2) (3) (4) (5) (6) (7) (8)

1 20.233 18.278 0.91 0.91 - - 9.623 2,361
(64.05) (59.31) (0.117) (0.117) (4.62)

2 12.516 12.321 0.979 1.024 0.979 - 9.92 276
(21.76) (21.59) (0.037) (0.042) (0.037) (4.81)

3 16.533 16.401 0.985 1.079 1.043 0.985 10.59 211
(41.70) (41.48) (0.02) (0.071) (0.048) (0.02) (4.86)

Total 19.211 17.562 0.922 0.934 1.007 0.985 9.72 2,848
(59.83) (55.59) (0.11) (0.121) (0.053) (0.02) (4.66)

Note: The first row corresponds to the summary statistics of auctions that ends in the first
round; the second row corresponds to auctions that ends in the second round; and the third row
corresponds to auctions that proceeds to the third round. The last row reports the summary
statistics of all auctions. Standard deviations are reported in parentheses. First and second
columns are in millions of yen.

Table OA.3: Sample Statistics for Municipal Auctions

the observed bidding pattern.

Online Appendix IV Case Study

In this section, we analyze four collusion cases that were implicated by the JFTC dur-
ing our sample period. The four cases are the bidding rings of: (A) prestressed concrete
providers; (B) firms installing traffic signs; (C) builders of bridge upper structures; and (D)
floodgate builders.61 In all of these cases, firms were found to have engaged in activities
such as deciding on a predetermined winner for each project and communicating among
the members about how each bidder will bid.62 All of the implicated firms in cases (B), (C)
and (D) admitted wrongdoing soon after the start of the investigation, but none of the firms

61See JFTC Recommendation #27-28 (2004) and Ruling #26-27 (2010a) for case (A); JFTC Recommen-
dation and Ruling #5-8 (2005b) for case (B); JFTC Recommendation and Ruling #12 (2005a) for case (C);
and JFTC Cease and Desist Order #2-5 (2007) for case (D).

62In all of these cases, the ring members took turns being the predetermined winner. The determination of
who would be the predetermined winner depended on factors such as whether a given firm had an existing
project that was closely related to the one being auctioned and the number of auctions a given firm had won
in the recent past.

OA-11



This figure is the analogue of Figure 1 for municipal auctions. The figure plots ∆2
12 in the left

panels and ∆2
23 in the right panels.

Figure OA.8: Difference in the Second-Round Bids for Municipal Auctions.

implicated in case (A) admitted any wrongdoing initially, and the case went to trial.63

Before we analyze these four cases, we point out one interesting feature of the bidding
ring in case (A): According to the ruling in case (A), an internal rule existed among the

63Out of 20 firms that were initially implicated in case (A), one firm was acquired by another firm, one was
acquitted, and the rest of the firms eventually settled with the JFTC after going to trial.
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subset of the ring members operating in the Kansai region, which prescribed that: 1) the
predetermined winner should aim to bid below the reserve price in the first round; 2) if
the predetermined winner did not bid below the reserve price in the first round, the firm
should submit a second-round bid that is less than some prespecified fraction (e.g., 0.97)
of its first-round bid (i.e., b2i(1) < 0.97 × b1i(1)); and 3) the rest of the ring members should
submit second-round bids that are higher than the prespecified fraction of the predetermined

winner’s first-round bid (e.g., b2i(k) > 0.97 × b1i(1) for k 6= 1). The prespecified fractions
used in the ring were 0.96 for auctions with an expected value less than 100 million yen;
0.97 for auctions with an expected value between 100 million yen and 500 million yen; and
0.975 for auctions expected to be worth more than 500 million yen. One consequence of
this internal rule is that the lowest cartel bidder will be the same in Round 1 and Round 2.

Figure OA.9 is a time series plot of the winning bid of auctions in which the winner is
a member of one of the implicated bidding rings. We have also drawn a vertical line that
corresponds to the “end date” of collusion. The “end date” is the date, according to the
JFTC’s ruling, after which the ring members were deemed to have stopped colluding. The
date roughly corresponds to the start date of the investigation. Note that in panels (B) and
(C) of Figure OA.9, there exist periods after the collusion end date during which no ring
member wins an auction. This reflects the fact that implicated ring members in cases (B)
and (C) were banned from participating in public procurement projects for a period of up
to 18 months.64

Figure OA.9 shows that for cases (B), (C), and (D), there is a general drop in the winning
bid of about 8.3%, 19.5%, and 5.3%, respectively, after the collusion end date. However,
there is almost no change in the winning bid for case (A) before and after the end date.
Also, it is worth mentioning that, even for cases (B), (C), and (D), there are some auctions
in which the winning bid is extremely high after the end date.65 While the investigation and
the ruling of the JFTC seem to have made collusion harder, it is far from clear whether the
prices after the end date are truly at competitive levels. We revisit this point below.

We now examine the second-round bids of i(1), i(2), and i(3) during the period in
which the firms were colluding.66 If the distinctive shapes of the distribution of ∆2

12 and
∆2

23 that we found in Section 4 are, indeed, evidence of collusion, we should expect to see

64The ring members involved in cases (A) and (D) were banned from bidding in procurement auctions in
2010 and 2007, respectively, which are after the sample period.

65In fact, about 24.4% of auctions after the end date have a winning bid higher than 95% for cases (B), (C)
and (D).

66Note that i(1), i(2), and i(3) are not necessarily members of the ring if an outsider bids in the auction.
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The horizontal axis corresponds to the calendar date from the beginning of our sample (i.e., April
1, 2003), and the vertical axis corresponds to the winning bid as a percentage of the reserve price.
The vertical line in each of the four panels corresponds to the collusion “end date.”

Figure OA.9: Winning Bids of Cartel Members.

the same pattern among the second-round bids of these colluding firms. Figure OA.10 plots
the histogram of ∆2

12 and ∆2
23 before the collusion end date for auctions won by each of

the four bidding rings. The samples used for the figure correspond to the set of auctions in
which b1i(2)− b1i(1) < 5% for the left column and b1i(3)− b1i(2) < 5% for the right column. We
see that for all four bidding rings, the histogram of ∆2

12 is asymmetric around zero, while
the histogram of ∆2

23 is symmetric around zero. Thus, Figure OA.10 suggests that the
distinctive shapes of the distributions of ∆2

12 and ∆2
23 are a hallmark of collusive bidding.

We next examine the second-round bids of the ring members, but for auctions occurring
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The left panels correspond to auctions in which b1i(2)−b
1
i(1) < 5%, and the right panels correspond

to auctions in which b1i(3) − b
1
i(2) < 5%. N is the sample size, and the number in the parenthesis

corresponds to the fraction of auctions that lie to the left of zero.

Figure OA.10: Difference in the Second-Round Bids of i(1) and i(2) (Left Panels) and the
Difference in the Second-Round Bids of i(2) and i(3) (Right Panels) Before the Collusion
End Date.

after the collusion end date. To the extent that ring members stopped colluding after the
end date, we should expect to see ∆2

12 to lie to the left of zero in a fair number of auctions.
Figure OA.11 plots the histogram of ∆2

12 and ∆2
23 for each of the four bidding rings with
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b1i(2) − b1i(1) < 5% and b1i(3) − b1i(2) < 5%. Although the sample sizes are very small, the
distributions of ∆2

12 and ∆2
23 in Figure OA.11 are similar to those in Figure OA.10. That

is, ∆2
12 is distributed to the right of zero, while ∆2

23 is distributed symmetrically around
zero. This may seem to cast doubt on our analysis – why do the distinctive patterns in the
distribution of ∆2

12 and ∆2
23 persist even after the collusion end date, when firms presumably

started behaving competitively?
Our view is that the asymmetry in the distribution of ∆2

12 should be taken as evidence
that the implicated firms were able to continue colluding at least on some auctions, even
after the end date. While the bidding rings seem to have changed their behavior around the
time of the end date – as the drop in the winning bid suggests in Figure OA.9 – this does
not necessarily mean that the firms completely ceased to collude. For example, a number of
firms implicated in case (C) were also subsequently charged and found guilty of collusion
in a separate case by the JFTC.

With respect to case (A), there is additional evidence that the ring members continued to
collude beyond the end date by following the formula for rebids that we described earlier.
Recall that a subset of the prestressed concrete ring members in the Kansai region had
a prespecified discount (0.96 for auctions valued at less than 100 million yen; 0.97 for
auctions valued between 100 million yen and 500 million yen; and 0.975 for auctions
valued at more than 500 million yen) that they used when rebidding in the second round.
Figure OA.12 plots the second-round bids of the ring members in the Kansai region as a
fraction of the lowest first-round bid. The top panel corresponds to auctions with a reserve
price below 100 million yen; the middle corresponds to those with a reserve price between
100 and 500 million yen; and the last panel corresponds to those with a reserve price of
more than 500 million yen. The horizontal axis in the figure corresponds to the calendar
date. The vertical line in each panel corresponds to the collusion end date. Thus, auctions
that took place before the end date appear to the left of this line. The circles in the figure
represent b2i(1)/b

1
i(1), and the Xs in the figure represent b2i(k)/b

1
i(1) for k 6= 1. We have drawn

a horizontal line at 0.96 (top panel), 0.97 (middle panel), and 0.975 (bottom panel).
While the top and the bottom panels are not very informative, note that all of i(1)’s

second-round bids in the middle panel of Figure OA.12 are below 0.97 of i(1)’s first-round
bid. Moreover, the bids of all of the others are above 0.97 of i(1)’s first-round bid, except
for one auction. If we focus on auctions after the collusion end date, the second-round
bids of i(k) (k 6= 1) are all above 0.97. The bidding pattern in Figure OA.12 suggests that
bidders continued to use the prespecified discount as the threshold value for submitting
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The left panels correspond to auctions in which b1i(2)−b
1
i(1) < 5%, and the right panels correspond

to auctions in which b1i(3) − b
1
i(2) < 5%.

Figure OA.11: Difference in the Second-Round Bids of i(1) and i(2) (Left Panels) and the
Difference in the Second-Round Bids of i(2) and i(3) (Right Panels) After the Collusion
End Date.

second-round bids. It seems quite likely that the ring members were able to maintain some
level of collusion even after the end date.
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The top panel corresponds to auctions with a reserve price less than 100 million yen; the second
panel corresponds to auctions with a reserve price between 100 million and 500 million yen; and
the last panel corresponds to auctions with a reserve price above 500 million yen. The horizontal
axis corresponds to the calendar date, starting from April 1, 2003. The vertical line at March 31,
2004 corresponds to the collusion end date of for case (A). Circles in the figure correspond to
b2i(1)/b

1
i(1), and Xs in the figure correspond to b2i (k)/b1i(1) for k 6= 1.

Figure OA.12: Second-Round Bids of the Ring Members of Kansai Region as a Fraction
of the Lowest First-Round Bid.

Online Appendix V Proof that bri − bri(1) admits continuous, strictly
positive and bounded density.

Consider the distribution of bri , fbri :
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fbri (t) =

∫
∂(bri )

−1(t; ci, h
r
i )

∂t
fxri |ci((b

r
i )
−1(t; ci, h

r
i )|ci)fci(ci)dci,

where (bri )
−1 is the inverse of bri with respect to the first element, and fxri |ci and fci are

the conditional density of xri , and the pdf of ci. Given that ∂bri
∂xri

is continuous and bounded

away from zero (Assumption 2), ∂(bri )
−1

∂t
is continuous and bounded. Because fxri |ci, and

fci are also continuous and bounded (Assumption 3), fbri (t) is continuous, by dominated
convergence. Note also that fbri (t) is bounded and positive.67 Similarly, the conditional
distribution of bri given bri(1) is as follows:

fbri |bri(1)(t) =

∫
∂(bri )

−1(t; ci;h
r
i )

∂t
fxri |ci((b

r
i )
−1(t; ci, h

r
i )|ci)dFci|bri(1) .

Note that Assumption 1 (i.e., the independence of xri,1 with respect to xri(1)) implies that the
distribution of fxri,1|xr

i,−1
does not change. Following a similar argument as before, fbri |bri(1)

is continuous, bounded and positive.
Now consider the distribution of bri − bri(1):

fbri−bri(1)(t) =

∫
fbri |bri(1)(s+ t|s)dFbr

i(1)
(s).

Given that fbri |bri(1)(·|s) is continuous and bounded, fbri−bri(1) is also continuous, by dominated
convergence. It is also bounded and positive.

Online Appendix VI A Theory of Two-stage Auctions with a Secret
Reserve Price

We consider an auction game with n bidders, two cost types, and two rounds. Assume
that the cost type, c, is either 0 or 1, with probability θ and 1 − θ, i.e., Pr(c = 0) = θ,
Pr(c = 1) = 1 − θ. We consider the case 0 < θ < 1 − n−1

√
1/3. Let the distribution of

the reserve price in the first round be uniform [0,1]. We assume that the seller accepts any
bid in the second round with ties in the second round broken in favor of low cost types.68

Assume that the lowest bid in the first round is announced, but none of the other bids are.

67The fact that fbrj is positive follows from Assumption 4 and the fact that fxr
i |ci > 0 (Assumption 3).

68More precisely, if a low cost type and a high cost type bid the same amount in the second round, we
assume that the low cost type wins the auction. Tie-breaking rules for other cases (e.g., ties between two low
cost types) turn out not to be important. Tie breaking rules for the first round will also not be important.
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Proposition OA There exists a Bayesian Nash equilibrium of the game. In particular,

there exists an equilibrium in which (1) the high-cost type bids 1 in each round; (2) the

low-cost type bids mixed strategies in both rounds; and (3) the first-round bidding strategy

of the low-cost type,H(·), is a c.d.f over support [1/2+(1−θ)n−1/2, 1] that is differentiable

in the interior of the support, has mass at 1, and has no mass anywhere else.

Proof. We consider the case of n = 2 because the proof for n > 2 is almost identical.
First, consider the second round of the auction following an initial round in which the two
bidders submit different bids (i.e., no tie in the first round). Let µ denote i(1)’s belief
that i(2) is a low cost type. µ is a function of i(1)’s first-round bid, b1i(1), but we suppress
this dependence for the time being. In the equilibrium that we consider, i(1) is always
a low cost bidder, which implies that i(2)’s equilibrium beliefs regarding i(1)’s type is
degenerate, with all the mass on low cost. Moreover, µ will be strictly between 0 and 1.
Consider the following mixed strategy, F1(τ), for the low-cost i(1) bidder in the second
round:

F1(τ) =


0 if τ < 1− µ,

τ + µ− 1

τ
if τ ∈ [1− µ, 1),

1 if 1 5 τ.

F1(·) is a distribution with support [1− µ, 1], with a mass of 1− µ at 1. Now consider the
following mixed strategy, F2(τ), for the low-cost i(2) bidder:

F2(τ) =


0 if τ < 1− µ,

τ + µ− 1

τµ
if τ ∈ [1− µ, 1),

1 if 1 5 τ.

For the high cost type, we consider a bidding strategy in which the bidder bids 1 with
probability 1. We show below that F1(·), F2(·), and the bidding strategy of the high cost
type constitute best responses.

Consider the second-round payoff of low-cost i(1) bidder when it bids b2i(1) = b:

π2
i(1)(b) = (1− F2(b))bµ+ (1− µ)b.

Note that b is the profit margin, µ(1 − F2(b)) is the probability that the opponent is a low
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cost type and bids higher than b, and 1 − µ is the probability that the opponent is a high
cost type. Substituting the expression for F2(·), we obtain

π2
i(1)(b) = b

[(
1− b+ µ− 1

bµ

)
µ+ (1− µ)

]
,

= 1− µ.

Hence, π2
i(1)(b) is constant for all b ∈ [1 − µ, 1). Any b ∈ [1 − µ, 1] maximizes low-cost

i(1)’s payoffs given i(2)’s strategy, F2(·).
Similarly, the payoff of low-cost i(2) bidder when it bids b ∈ [1− µ, 1) is as follows:

π2
i(2)(b) = b [(1− F1(b))] ,

= b

[(
1− b+ µ− 1

b

)]
,

= 1− µ,

where we have used the fact that i(2) believes that i(1) is a low-cost type with probability
1. We find that π2

i(2) is constant for b ∈ [1−µ, 1). Bidding any value in [1−µ, 1) maximizes
low-cost i(2)’s payoffs given i(1)’s strategy. It is easy to see that bidding 1 with probability
1 is also a best response for the high-cost type.69 Hence, the strategies described above
constitute best responses.

Now consider the second-round of the auction game following an initial round in which
the bidders bid identically. We only consider the case in which the first-round tie occurs
at bids equal to 1 because this is the only case that will occur with positive probability on
the equilibrium path. In this case, we need not make a distinction between i(1) and i(2),
because both bidders are symmetric. Letting µ denote bidders’ belief that the opponent is
a low-cost type, the following bidding strategy constitutes a best response for the low-cost
types:

F (τ) =


0 if τ < 1− µ,

τ + µ− 1

µτ
if τ ∈ [1− µ, 1),

1 if 1 5 τ.

We now consider the first round of the auction game. Recall that we consider an equi-

69Recall that a tie between a high cost type and a low cost type is broken in favor of the low cost type by
assumption.
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librium in which the low-cost types play a mixed strategy, sayH(·), and the high-cost types
play a pure strategy (with all the mass at 1). We focus on a bidding strategy H(·) such that
H(·) has support between [1 − θ/2, 1], is differentiable in the interior of the support, has
mass at 1, and has no mass anywhere else.

The expected payoff of a low-cost bidder from bidding b, π1(b), is as follows:

π1(b) =

opponent bids lower and proceed to second round︷ ︸︸ ︷
θ

∫ t=b

t=0

t(1− µ(t))dH(t)

+

opponent bids higher and proceed to second round︷ ︸︸ ︷
[1− θH(b)] b(1− µ(b)) if b < 1

+

win in the first round︷ ︸︸ ︷
[1− θH(b)] (1− b)b

π1(1) =

profit when opponent bids less than 1︷ ︸︸ ︷
θ

∫
0<t<1

t(1− µ(t))dH(t)

+

profit when opponent bids 1︷ ︸︸ ︷
(1− θ + θHδ)× (1− µ(1)) ,

where Hδ = 1− limb→1H(b) (i.e., the mass point at 1).
The first expression corresponds to the bidder’s expected profit when b < 1. The ex-

pression has three components, corresponding to three possible outcomes. The first term
corresponds to the expected profit when the opponent bids lower and the auction proceeds
to the second round. The second term corresponds to the case in which the opponent bids
higher and the auction proceeds to the second round. The last term corresponds to the case
in which the auction ends in the first round. The second expression corresponds to the
bidder’s expected profit when b = 1. Note that we now make the dependence of µ on the
first-round bid explicit, as µ(b).

The expression for µ is given by Bayes rule as follows:

µ(t) =


θ(1−H(t))

θ(1−H(t)) + (1− θ)
if t ∈ [0, 1),

θHδ

θHδ + (1− θ)
if t = 1.

Substituting this expression into the expression for the expected profit, we obtain the fol-
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lowing expression:

π1(b) = θ

∫ t=b

t=0

t
1− θ

1− θH(t)
dH(t) + (1− θ)b+ [1− θH(b)] (1− b)b, if b < 1

π1(1) = θ

∫
0<t<1

t
1− θ

1− θH(t)
dH(t) + (1− θ).

Taking the derivative of π1(b) (b < 1) we obtain the following expression:

∂π1(b)

∂b
=

[
θb

1− θ
1− θH(b)

− θ(1− b)b
]
H ′(b)

+(1− θ) + [1− θH(b)](1− 2b).

Setting this expression equal to zero, and solving for H ′, we obtain the following expres-
sion,

H ′(b) =
[1− θH(b)] [(1− θ)− [1− θH(b)](2b− 1)]

θb[(1− θH(b))(1− b)− (1− θ)]
. (OA-2)

Lemma OA-1 below guarantees that expression (OA-2) with an initial condition H(1−
θ/2) = 0 admits a solution that is monotone increasing in range [1− θ/2, 1) and bounded
above by 1. If we define H(1) = 1, H(·) will be a proper distribution function.

We wish to prove that bidding according to H(·) for low cost types is a best response
to other low cost types bidding H(·) (and high cost types bidding 1 with probability 1). If
other low cost types bid according to H(·), the payoff from bidding any b between 1− θ/2
and 1 (i.e., b ∈ [1 − θ/2, 1)) yields the same expected payoff to the low cost type, by
construction. Below, we show that bidding exactly equal to 1 yields the same payoff as
bidding just below 1 and that bidding below 1− θ/2 yields lower payoffs than π1(1− θ/2).

First we show that bidding exactly equal to 1 yields the same payoff as bidding just
below 1. Consider the payoff from bidding just below 1;

π1(1− ε) = θ

∫ 1−ε

t=0

t
1− θ

1− θH(t)
dH(t) + (1− θ) + [1− θH(1− ε)] ε(1− ε).

Taking ε to zero, we find

lim
ε→0

π1(1− ε) = θ

∫
0<t<1

t
1− θ

1− θH(t)
dH(t) + (1− θ),

which is the same expression as π1(1), the payoff from bidding exactly 1. Hence, the
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expected payoff from bidding 1 is the same as bidding just below it.
Now consider bidding lower than 1− θ/2. The payoff associated with b (b 5 1− θ/2)

is as follows:

π1(b) =

expected profit from first round︷ ︸︸ ︷
b(1− b) +

expected profit from second round︷ ︸︸ ︷
b(1− µ)

= b(2− θ − b).

Given that this expression is strictly increasing for b 5 1 − θ/2, π1
1(b) < π1

1(1 − θ/2) for
b < 1− θ/2.

When n > 2, the differential equation that defines the equilibrium strategy of a low-cost
type in the first round is given by

H ′(b) =
[1− θH(b)] [(1− θ)n−1 − [1− θH(b)]n−1(2b− 1)]

(n− 1)θb[(1− θH(b))n−1(1− b)− (1− θ)n−1]
.

Corollary OA Let b be any number between 0 and 1, i.e., b ∈ [0, 1]. Assume that the lowest

bid in the first round is b, i.e., b1i(1) = b. Then, there exists ε > 0 such that if b1i(2)−b1i(1) < ε,

the probability that i(2) outbids i(1) in the second round is above 1/2.

Proof. Consider the case in which b < 1. Then take ε so that b + ε < 1. When
b1i(2) − b1i(1) < ε, both i(1) and i(2) are low cost types. Then the probability that i(2) wins
is (1−µ) + 1

2
µ = 1− 1

2
µ. Given that µ ∈ [0, 1], the winning probability is higher than 1/2.

Now consider the case in which b = 1. Let ε be any number. b1i(2) − b1i(1) < ε implies
that b1i(1) = b1i(2) = 1. In this case, the probability that i(2) wins is 1/2.

Lemma OA-1 Consider the following differential equation

y′ =
[1− θy][(1− θ)n−1 − [1− θy]n−1(2x− 1)]

(n− 1)θx[(1− θy)n−1(1− x)− (1− θ)n−1]
, (OA-3)

with an initial condition y(1/2 + (1 − θ)n−1/2) = 0. There exists a solution y that is

monotone increasing in range [1/2 + (1− θ)n−1/2, 1]. Moreover, y(1) 5 1.

Proof. Consider the denominator of expression (OA-3),

D = (n− 1)θx[(1− θy)n−1(1− x)− (1− θ)n−1].
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If y = 0, the square bracket term is zero if x = 1 − (1 − θ)n−1. The square bracket is
decreasing in both x and y. Hence, for any x ∈ (1 − (1 − θ)n−1, 1] and y ∈ [0, 1], the
square bracket term is strictly negative. Because 1 − (1 − θ)n−1 < 1/2 + (1 − θ)n−1/2

when θ < 1 − n−1
√

1/3, the right hand side of expression (OA-3) is Lipschitz continuous
on (x, y) ∈ [1/2 + (1− θ)n−1/2, 1]× [0, 1].

Now consider the numerator of expression (OA-3),

N = (1− θy)
[
(1− θ)n−1 − (1− θy)n−1(2x− 1)

]
.

Note that the term inside the square bracket is negative if

y 5
1

θ

(
1− 1− θ

n−1
√

2x− 1

)
.

Hence,

sgn(N) = sgn(1− θy)sgn

(
y − 1

θ

(
1− 1− θ

n−1
√

2x− 1

))
,

= sgn(1− θy)sgn(y − f(x)),

where f(x) =
1

θ

(
1− 1− θ

n−1
√

2x− 1

)
.

In the region (x, y) ∈ [1/2+(1−θ)n−1/2, 1]× [0, 1], the right hand side of expression (OA-
3) is positive below y = f(x) and negative above it. Note that f(1/2 + (1− θ)n−1/2) = 0,
f(1) = 1, and f ′(x) > 0 for all x ∈ (1/2 + (1− θ)n−1/2, 1) and θ ∈ (0, 1). Figure OA.13
illustrates the phase diagram for the case of θ = 1/2 and n = 2.

Given the Lipschitz continuity of the right hand side of expression (OA-3), there exists
a local solution, y(·), to the initial condition problem. y(·) is increasing and y 5 f . To
see that y(·) can be extended to the interval [1/2 + (1 − θ)n−1/2, 1), suppose that it can
only be extended to δ, where δ < 1. Consider yδ = limx→δ y(x). Given that y(·) is
monotone and bounded above by f , yδ exists and is finite. Moreover, yδ 5 f(δ). Given
that the right hand side of expression (OA-3) is continuous, limx→δ y

′(x) also exists and
is finite. Now, consider solving for expression (OA-3) with an initial condition (x, y) =

(δ, yδ). There exists a local solution, yδ(·), and, its value and derivative will agree with the
original solution, i.e., yδ(δ) = limx→δ y(x) and limx→δ y

′(x) = y′δ(δ). Hence, we get a
contradiction. Finally, y 5 f implies y(1) 5 f(1) = 1.
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Figure OA.13: Phase Diagram of Differential Equation (OA-2) When θ = 1/2 and n = 2.
The solution to (OA-2) with initial value condition H(1− θ/2) = 0, is given by y = y(x).

Online Appendix VII Robustness of the Test for Firm Best Response

In this section, we explore the robustness of our analysis in Section 5.1 [Optimality of
Second-Round Bidding Strategy] to the assumption that bidder costs are private. Recall
that the private value assumption guarantees that bidder i’s third round bid is a valid upper
bound on its perceived costs at the time of bidding in Round 2. In order to explore the
sensitivity of our results to the assumption, we consider alternative bounds on bidder costs
perceived at the time of bidding in Round 2 as follows:

c ≤ (b2 − b3)ρ+ b3,

for different values of ρ ∈ [0, 1]. ρ = 0 corresponds to the analysis in Section 6.1. ρ = 1

corresponds to the extreme case in which bidders bid their perceived costs in Round 2.
The tables below show the results of the test presented in Table 4 for ρ = 0.2, 0.5,

and 0.8, respectively. We find that the expected gains remain positive and statistically
significant for the most part for ρ = 0.2 and 0.5. The results of the table show that as long
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∆πi|I (Yen)
x = 99.0% 98.5% 98.0% 97.5% 97.0% N

δ = 1% 734,221 1,088,161 1,171,978 1,094,705 919,117 4,499
(138,239) (211,864) (253,542) (283,027) (308,768)

3% 403,653 667,806 817,424 844,235 747,259 26,008
(82,779) (122,508) (157,589) (188,824) (211,440)

5% 300,131 519,350 661,845 700,832 626,052 42,141
(59,344) (92,502) (123,096) (149,432) (169,165)

15% 211,644 376,243 486,462 523,454 468,520 66,124
(41,364) (66,142) (89,136) (109,258) (123,952)

Note: Standard errors are computed using bootstrap and reported in parenthesis. All the
numbers are in Yen.

Table OA.4: Expected Gain in Profits from Bidding xb2i : ρ = 20%.

∆πi|I (Yen)
x = 99.0% 98.5% 98.0% 97.5% 97.0% N

δ = 1% 253,285 345,541 249,705 38,303 -256,652 4,499
(91,281) (134,117) (161,397) (182,378) (201,510)

3% 164,188 247,219 222,801 90,410 -136,098 26,008
(49,068) (74,430) (97,743) (118,965) (135,050)

5% 113,514 184,270 172,109 63,970 -134,119 42,141
(35,266) (56,069) (75,734) (92,976) (106,621)

15% 70,765 123,525 113,172 28,453 -131,589 66,124
(24,683) (40,079) (54,663) (67,807) (77,846)

Note: Standard errors are computed using bootstrap and reported in parenthesis. All the
numbers are in Yen.

Table OA.5: Expected Gain in Profits from Bidding xb2i : ρ = 50%.

as bidder costs are bounded above by the average of its second round bid and its third round
bid (i.e., ρ = 0.5) bidders can increase profits by bidding more aggressively.
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∆πi|I (Yen)
x = 99.0% 98.5% 98.0% 97.5% 97.0% N

δ = 1% -157,259 -329,286 -607,374 -955,502 -1,372,424 4,499
(64,431) (79,271) (94,009) (108,654) (124,037)

3% -59,214 -157,652 -356,453 -648,392 -1,004,778 26,008
(25,329) (37,556) (51,097) (64,603) (77,043)

5% -55,751 -133,528 -300,411 -555,743 -877,208 42,141
(17,231) (26,101) (35,822) (45,949) (55,572)

15% -50,483 -109,454 -240,271 -446,591 -711,634 66,124
(11,802) (18,043) (25,051) (32,713) (40,090)

Note: Standard errors are computed using bootstrap and reported in parenthesis. All the
numbers are in Yen.

Table OA.6: Expected Gain in Profits from Bidding xb2i : ρ = 80%.
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